×

Decision systems in rough set theory: a set operatorial perspective. (English) Zbl 1411.68155

Summary: In rough set theory (RST), the notion of decision table plays a fundamental role. In this paper, we develop a purely mathematical investigation of this notion to show that several basic aspects of RST can be of interest also for mathematicians who work with algebraic and discrete methods.
In this abstract perspective, we call decision system a sextuple \(\mathcal{S} = \langle U_{\mathcal{S}}, \Omega_{\mathcal{S}}, C_{\mathcal{S}},\)\(D_{\mathcal{S}}, F_{\mathcal{S}}, \Lambda_{\mathcal{S}} \rangle\), where \(U_{\mathcal{S}}\), \(C_{\mathcal{S}}\), \(\Lambda_{\mathcal{S}}\) are non-empty sets whose elements are called, respectively, objects, condition attributes, values, \(D_{\mathcal{S}}\) is a (possibly empty) set whose elements are called decision attributes, \(\Omega_{\mathcal{S}} : = C_{\mathcal{S}} \cup D_{\mathcal{S}}\) and \(F_{\mathcal{S}} : U_{\mathcal{S}} \times(C_{\mathcal{S}} \cup D_{\mathcal{S}}) \rightarrow \Lambda_{\mathcal{S}}\) is a map.
The basic tool of our analysis is the equivalence relation \(\equiv_A\) on \(U_{\mathcal{S}}\), depending on the choice of a condition attribute subset \(A \subseteq C_{\mathcal{S}} \cup D_{\mathcal{S}}\) and defined as follows: \[u \equiv_A u^\prime : \Leftrightarrow F_{\mathcal{S}}(u, a) = F_{\mathcal{S}}(u^\prime, a) \quad \forall a \in A .\] We denote by \([u]_A\) the equivalence class of \(u \in U_{\mathcal{S}}\) with respect to \(\equiv_A\). We interpret the classical RST notions of consistency and inconsistency for a decision table in an abstract algebraic set operatorial perspective and, in such a context, we introduce and investigate a kind of local consistency in any decision system \(\mathcal{S}\). More specifically, we fix \(W \subseteq U_{\mathcal{S}}\), \(A \subseteq C_{\mathcal{S}}\) and try to determine in what cases all objects \(u \in W\) satisfy the condition \([u]_A \cap W \subseteq [u]_{D_{\mathcal{S}}} \cap W\). Then, we build a formal general framework whose basic tools are two local consistency set operators and a global closure operator, the condition attribute set \(C_{\mathcal{S}}\). This paper provides a detailed study of these set operators, of the induced set systems and of the most relevant links between them.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
Full Text: DOI

References:

[1] Adaricheva, K. V., Gorbunov, V. A. and Tumanov, V. I., Join-semidistributive lattices and convex geometries, Adv. Math.173 (2003) 1-49. · Zbl 1059.06003
[2] Andrews, G. E., Euler’s De Partitio numerorum, Bull. Amer. Math. Soc.44(4) (2007) 561-573. · Zbl 1172.11031
[3] Baker, M. and Norine, S., Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math.215(2) (2007) 766-788. · Zbl 1124.05049
[4] Bayley, R. A., Association Schemes: Designed Experiments, Algebra and Combinatorics (Cambridge University Press, Cambridge2004), 387 pp. · Zbl 1051.05001
[5] Bayley, R. A., Orthogonal partitions in designed experiments, Designs, Codes Crypt.8(3) (1996) 45-77. · Zbl 0877.05006
[6] Berge, C., Hypergraphs: Combinatorics of Finite Sets (Elsevier, Amsterdam, 1984).
[7] Biacino, L., Generated envelopes, J. Math. Anal. Appl.172 (1993) 179-190. · Zbl 0777.60004
[8] Biacino, L. and Gerla, G., An extension principle for closure operators, J. Math. Anal. Appl.198 (1996) 1-24. · Zbl 0855.54007
[9] Birkhoff, G., Lattice Theory, 3rd edn. (American Mathematical Society, Providence, Rhode Island, 1967). · Zbl 0126.03801
[10] Bisi, C. and Chiaselotti, G., A class of lattices and boolean functions related to the Manickam-Miklös-Singhi conjecture, Adv. Geom.13(1) (2013) 1-27. · Zbl 1259.05178
[11] Bisi, C., Chiaselotti, G., Marino, G. and Oliverio, P. A., A natural extension of the Young partition lattice, Adv. Geom.15(3) (2015) 263-280. · Zbl 1317.05018
[12] Bisi, C., Chiaselotti, G., Gentile, T. and Oliverio, P. A., Dominance order on signed partitions, Adv. Geom.17(1) (2017) 5-29. · Zbl 1383.05020
[13] Cameron, P. J., Gadoleau, M. and Soren, R., Combinatorial representations, J. Combin. Theory Ser. A120(3) (2013) 671-682. · Zbl 1259.05033
[14] Cattaneo, G. and Ciucci, D., Algebraic structures for rough sets, in Special Issue on Foundations of Rough Sets, eds. Peter, J. F. and Skowron, A., , Vol. 3135 (Springer-Verlag, 2004), pp. 208-252. · Zbl 1109.68115
[15] Cattaneo, G. and Ciucci, D., Lattices with interior and closure operators and abstract approximation spaces, in Special Issue on Foundations of Rough Sets, eds. Peter, J. F. and Skowron, A., , Vol. 5656 (Springer-Verlag, 2009), pp. 67-116. · Zbl 1248.06005
[16] Cattaneo, G., An investigation about rough set theory: Some foundational and mathematical aspects, Fund. Inf.108 (2011) 197-221. · Zbl 1241.03060
[17] Cattaneo, G., Chiaselotti, G., Oliverio, P. A. and Stumbo, F., A new discrete dynamical system of signed integer partitions, European J. Combin.55 (2016) 119-143. · Zbl 1333.05026
[18] Chartrand, G., Eroh, L., Johnson, M. A. and Oellermann, O. R., Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math.105 (2000) 99-113. · Zbl 0958.05042
[19] Chiaselotti, G., Keith, W. and Oliverio, P. A., Two self-dual lattices of signed integer partitions, Appl. Math. Inf. Sci.8 (2014) 3191-3199.
[20] Chiaselotti, G., Ciucci, D., Gentile, T. and Infusino, F., Rough set theory applied to simple undirected graphs, Proc. RSKT 2015, , Vol. 9436, (Springer, 2015), pp. 423-434. · Zbl 1444.68219
[21] Chiaselotti, G., Ciucci, D., Gentile, T. and Infusino, F., Preclusivity and simple graphs, Proc. RSFDGrC 2015, , Vol. 9437 (Springer, 2015), pp. 127-137. · Zbl 1444.68199
[22] Chiaselotti, G., Ciucci, D., Gentile, T. and Infusino, F., Preclusivity and simple graphs: The \(n\)-cycle and \(n\)-path cases, Proc. RSFDGrC 2015, , Vol. 9437 (Springer, 2015), pp. 138-148. · Zbl 1444.68200
[23] Chiaselotti, G., Ciucci, D., Gentile, T. and Infusino, F., Generalizations of rough set tools inspired by graph theory, Fund. Inf.148 (2016) 207-227. · Zbl 1388.03045
[24] Chiaselotti, G. and Gentile, T., Intersection properties of maximal directed cuts in digraphs, Disc. Math.340 (2017) 3171-3175. · Zbl 1347.05083
[25] Chiaselotti, G., Ciucci, D., Gentile, T. and Infusino, F., Rough set theory and digraphs, Fund. Inf.153 (2017) 291-325. · Zbl 1400.05193
[26] Chiaselotti, G., Gentile, T., Infusino, F. and Oliverio, P. A., The adjacency matrix of a graph as a data table. A geometric perspective, Ann. Mat. Pur. Appl.196(3) (2017) 1073-1112. · Zbl 1366.05029
[27] Chiaselotti, G., Gentile, T. and Infusino, F., Knowledge pairing systems in granular computing, Knowl. Based Syst.124 (2017) 144-163.
[28] Chiaselotti, G., Gentile, T. and Infusino, F., Simplicial complexes and closure systems induced by indistinguishability relations, C. R. Acad. Sci. Paris, Ser. I355 (2017) 991-1021. · Zbl 1371.05327
[29] Chiaselotti, G., Gentile, T., Infusino, F. and Oliverio, P. A., Dependency and accuracy measures for directed graphs, Appl. Math. Comput.320 (2018) 781-794. · Zbl 1426.05055
[30] Ciucci, D. E., Temporal dynamics in information tables, Fund. Inf.115(1) (2012) 57-74. · Zbl 1237.68212
[31] Doust, I. and Weston, A., Enhanced negative type for finite metric trees, J. Funct. Anal.254(9) (2008) 2336-2364. · Zbl 1148.46012
[32] Eiter, T. and Gottlob, G., Identifying the minimal transversals of a hypergraph and related problems, SIAM J. Comput.24 (1995) 1278-1304. · Zbl 0842.05070
[33] Elbassioni, K., On the complexity of monotone dualization and generating minimal hypergraph transversals, Discr. Appl. Math.32(2) (2008) 171-187. · Zbl 1160.68017
[34] Frolik, Z., Katetov, M. and Ptak, V., General topology and its relations to modern analysis and algebra II, in Proc. Second Prague Topological Symp. (Academic Press, New York, 1966). · Zbl 0168.24201
[35] Gutev, V., Selections and topological convexity, Topology Appl.155 (2008) 814-823. · Zbl 1144.54010
[36] Gyárfás, A. and Lehel, J., Hypergraph families with bounded edge cover or transversal number, Combinatorica3(3-4) (1983) 351-358. · Zbl 0534.05052
[37] Hagen, M., Lower bounds for three algorithms for transversal hypergraph generation, Discr. Appl. Math.157 (2009) 1460-1469. · Zbl 1177.05116
[38] Harley, P. W. III, Metric and symmetric spaces, Proc. Amer. Math. Soc.43(2) (1974) 428-430. · Zbl 0288.54031
[39] Hjorth, P., Lisonek, P., Markvorsen, S. and Thomassen, C., Finite metric spaces of strictly negative type, Linear Algebra Appl.270 (1998) 255-273. · Zbl 0894.51003
[40] Keith, W. J., A bijective toolkit for signed partitions, Ann. Combin.15 (2011) 95-117. · Zbl 1233.05031
[41] Martin, H. W., Metrization of symmetric spaces and regular maps, Proc. Amer. Math. Soc.35 (1972) 269-274. · Zbl 0264.54023
[42] Magner, A., Janson, S., Kollias, G. and Szpankowski, W., On symmetry of uniform and preferential attachment graphs, Electronic J. Combin.21(3) (2014). · Zbl 1331.05197
[43] Michael, E., Convex structures and continuous selections, Canadian J. Math.11 (1959) 556-575. · Zbl 0093.36603
[44] Pagliani, P. and Chakraborty, M. K., Formal Topology and Information Systems, Transactions on Rough Sets VI, , Vol. 4374 (Springer-Verlag, 2007), pp. 253-297. · Zbl 1186.68453
[45] Pagliani, P. and Chakraborty, M. K., A Geometry of Approximation, Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns (Springer, 2008). · Zbl 1213.03002
[46] Z. Pawlak, Rough Sets — Theoretical Aspects of Reasoning about Data (Kluwer Academic Publishers, Dordrecht, 1991). · Zbl 0758.68054
[47] Pawlak, Z. and Skowron, A., Rudiments of rough sets, Inf. Sci.177 (2007) 3-27. · Zbl 1142.68549
[48] Pawlak, Z. and Skowron, A., Rough sets: Some extensions, Inf. Sci.177 (2007) 28-40. · Zbl 1142.68550
[49] Pawlak, Z. and Skowron, A., Rough sets and Boolean reasoning, Inf. Sci.177 (2007) 41-73. · Zbl 1142.68551
[50] Pfaltz, J. L., Convexity in directed graphs, J. Combin. Theory10 (1971) 143-162. · Zbl 0174.26803
[51] Poonen, B., Union-closed families, J. Combin. Theory Ser. A59 (1992) 253-268. · Zbl 0758.05096
[52] Rota, G., On the foundations of combinatorial theory I. Theory of Möbius Functions, Z. Wahrs.2 (1964) 340-368. · Zbl 0121.02406
[53] Sanahuja, S. M., New rough approximations for \(n\)-cycles and \(n\)-paths, Appl. Math. Comput.276 (2016) 96-108. · Zbl 1410.68355
[54] Sánchez, S., On the supremal p-negative type of finite metric spaces, J. Math. Anal. Appl.389 (2012) 98-107. · Zbl 1236.46018
[55] Ślezak, D., On generalized decision functions: Reducts, networks and ensembles, RSFDGrC, 2015, pp. 13-23. · Zbl 1444.68245
[56] Stawicki, S., Ślezak, D., Janusz, A. and Widz, S., Decision bireducts and decision reducts — a comparison, Int. J. Appr. Reas.84 (2017) 75-109. · Zbl 1419.68178
[57] Tanga, J., Shea, K., Min, F. and Zhu, W., A matroidal approach to rough set theory, Theor. Comput. Sci.471(3) (2013) 1-11. · Zbl 1258.05022
[58] Wang, S., Zhu, W., Zhu, Q. and Min, F., Four matroidal structures of covering and their relationships with rough sets, Int. J. Appr. Reas.54(9) (2013) 1361-1372. · Zbl 1316.05025
[59] Wild, M., A theory of finite closure spaces based on implications, Adv. Math.108 (1994) 118-139. · Zbl 0863.54002
[60] Wild, M., Computations with Finite Closure Systems and Implications, , Vol. 959 (Springer, 1995), pp. 111-120. · Zbl 1527.68148
[61] Wild, M., Base exchange properties of graphic matroids, Discr. Math.148(1-3) (1996) 253-264. · Zbl 0846.05014
[62] Wild, M., Optimal implicational bases for finite modular lattices, Quaes. Math.23 (2000) 153-161. · Zbl 0963.06006
[63] Wild, M., On rank functions of lattices, Order22(4) (2005) 357-370. · Zbl 1105.06007
[64] Wild, M., The joy of implications, aka pure Horn formulas: Mainly a survey, In Theoretical Computer Science, Vol. 658 (Springer, 2017), pp. 264-292. · Zbl 1418.03144
[65] Wolf, R., On the gap of finite metric spaces of \(p\)-negative type, Linear Algebra Appl.436 (2012) 1246-1257. · Zbl 1241.46014
[66] Xiang, S. W. and Xia, S., A further characteristic of abstract convexity structures on topological spaces, J. Math. Anal. Appl.335 (2007) 716-723. · Zbl 1131.54034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.