×

A primer on noise-induced transitions in applied dynamical systems. (English) Zbl 1408.37089

Summary: Noise plays a fundamental role in a wide variety of physical and biological dynamical systems. It can arise from an external forcing or due to random dynamics internal to the system. It is well established that even weak noise can result in large behavioral changes such as transitions between or escapes from quasi-stable states. These transitions can correspond to critical events such as failures or extinctions that make them essential phenomena to understand and quantify, despite the fact that their occurrence is rare. This article will provide an overview of the theory underlying the dynamics of rare events for stochastic models along with some example applications.

MSC:

37H10 Generation, random and stochastic difference and differential equations
37N25 Dynamical systems in biology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)
92D30 Epidemiology
92D40 Ecology

References:

[1] D. A. Adams, L. M. Sander, and R. M. Ziff, The barrier method: A technique for calculating very long transition times, J. Chem. Phys., 133 (2010), art. 124103.
[2] W. C. Allee, Animal Aggregations. A Study in General Sociology, University of Chicago Press, 1931.
[3] D. Anderson, M. Lisak, and A. Berntson, A variational approach to nonlinear evolution equations in optics, Pramana, 57 (2001), pp. 917–936.
[4] H. Andersson and B. Djehiche, A threshold limit theorem for the stochastic logistic epidemic, J. Appl. Prob., 35 (1998), pp. 662–670. · Zbl 0921.92027
[5] M. Assaf and B. Meerson, Spectral theory of metastability and extinction in a branching-annihilation reaction, Phys. Rev. E, 75 (2007), art. 031122.
[6] M. Assaf and B. Meerson, Extinction of metastable stochastic populations, Phys. Rev. E, 81 (2010), art. 021116. · Zbl 1368.92133
[7] M. Assaf, E. Roberts, and Z. Luthey-Schulten, Determining the stability of genetic switches: Explicitly accounting for mRNA noise, Phys. Rev. Lett., 106 (2011), art. 248102.
[8] B. G. Bale and J. N. Kutz, Variational method for mode-locked lasers, J. Opt. Soc. Amer. B, 25 (2008), pp. 1193–1202.
[9] C. Bao, A. C. Funk, C. Yang, and S. T. Cundiff, Pulse dynamics in a mode-locked fiber laser and its quantum limited comb frequency uncertainty, Opt. Lett., 39 (2014), pp. 3266–3269.
[10] M. Bauver, E. Forgoston, and L. Billings, Computing the optimal path in stochastic dynamical systems, Chaos, 26 (2016), art. 083101. · Zbl 1378.60096
[11] L. Billings and E. Forgoston, Seasonal forcing in stochastic epidemiology models, Ric. Mat., 67 (2018), pp. 27–47. · Zbl 1391.92048
[12] B. Z. Bobrovsky and Z. Schuss, A singular perturbation method for the computation of the mean first passage time in a nonlinear filter, SIAM J. Appl. Math., 42 (1982), pp. 174–187, . · Zbl 0501.60051
[13] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation, and Control, Taylor & Francis, 2001.
[14] D. S. Cargill and R. O. Moore, Incorporating radiation in noise-induced phase evolution of optical solitons, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 1025–1061, . · Zbl 1342.35292
[15] D. S. Cargill, R. O. Moore, and C. J. McKinstrie, Noise bandwidth dependence of soliton phase in simulations of stochastic nonlinear Schrödinger equations, Opt. Lett., 36 (2011), pp. 1659–1661.
[16] A. Chernykh and M. Stepanov, Large negative velocity gradients in Burgers turbulence, Phys. Rev. E, 64 (2001), art. 026306.
[17] W. Cousins and T. P. Sapsis, Reduced-order precursors of rare events in unidirectional nonlinear water waves, J. Fluid Mech., 790 (2016), pp. 368–388. · Zbl 1382.76030
[18] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 45, Cambridge University Press, 2008. · Zbl 1140.60034
[19] A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in \(H^1\), Stochastic Anal. Appl., 21 (2003), pp. 97–126. · Zbl 1027.60065
[20] E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications, Wiley-Interscience, 2002.
[21] C. R. Doering, K. V. Sargsyan, and L. M. Sander, Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker–Planck approximation, Multiscale Model. Simul., 3 (2005), pp. 283–299, . · Zbl 1072.60092
[22] G. M. Donovan and W. L. Kath, Rare event simulation of the performance of an actively mode-locked fiber laser model, in Photonic Applications Systems Technologies Conference, 2007.
[23] J. L. Doob, Topics in the theory of Markoff chains, Trans. Amer. Math. Soc., 52 (1942), pp. 37–64. · Zbl 0063.09001
[24] M. I. Dykman and M. A. Krivoglaz, Theory of fluctuational transitions between stable states of a nonlinear oscillator, Sov. Phys. JETP, 50 (1979), pp. 30–37.
[25] M. I. Dykman, E. Mori, J. Ross, and P. M. Hunt, Large fluctuations and optimal paths in chemical-kinetics, J. Chem. Phys., 100 (1994), pp. 5735–5750.
[26] M. I. Dykman, I. B. Schwartz, and A. S. Landsman, Disease extinction in the presence of random vaccination, Phys. Rev. Lett., 101 (2008), art. 078101.
[27] W. E, W. Ren, and E. Vanden-Eijnden, Simplified and improved string method for computing the minimum energy paths in barrier-crossing events, J. Chem. Phys., 126 (2007), art. 164103.
[28] V. Elgart and A. Kamenev, Rare event statistics in reaction-diffusion systems, Phys. Rev. E, 70 (2004), art. 041106.
[29] G. E. Falkovich, I. Kolokolov, V. Lebedev, and S. K. Turitsyn, Statistics of soliton-bearing systems with additive noise, Phys. Rev. E, 63 (2001), art. 025601.
[30] M. Farazmand and T. P. Sapsis, A variational approach to probing extreme events in turbulent dynamical systems, Sci. Advances, 3.9 (2017), e1701533. · Zbl 1376.86003
[31] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, 1965. · Zbl 0176.54902
[32] E. Forgoston, S. Bianco, L. B. Shaw, and I. B. Schwartz, Maximal sensitive dependence and the optimal path to epidemic extinction, Bull. Math. Biol., 73 (2011), pp. 495–514. · Zbl 1226.92062
[33] E. Forgoston, L. Billings, P. Yecko, and I. B. Schwartz, Set-based corral control in stochastic dynamical systems: Making almost invariant sets more invariant, Chaos, 21 (2011), p. 013116. · Zbl 1345.37096
[34] E. Forgoston and I. B. Schwartz, Escape rates in a stochastic environment with multiple scales, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 1190–1217, . · Zbl 1204.37057
[35] M. I. Freidlin and A. D. Wentzell, On small random perturbations of dynamical systems, Russian Math. Surveys, 25 (1970), pp. 1–55. · Zbl 0297.34053
[36] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, 1984. · Zbl 0522.60055
[37] T. A. Fulton and L. N. Dunkelberger, Lifetime of the zero-voltage state in Josephson tunnel junctions, Phys. Rev. B, 9 (1974), pp. 4760–4768.
[38] H. Gang, Stationary solution of master equations in the large-system-size limit, Phys. Rev. A, 36 (1987), pp. 5782–5790.
[39] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer-Verlag, 2004. · Zbl 1143.60001
[40] E. Gautier, Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications, ESAIM: Probab. Stat., 9 (2005), pp. 74–97. · Zbl 1136.60346
[41] E. Gautier, Uniform large deviations for the nonlinear Schrödinger equation with multiplicative noise, Stochastic Process. Appl., 115 (2005), pp. 1904–1927. · Zbl 1085.60016
[42] B. Gaveau, M. Moreau, and J. Toth, Decay of the metastable state in a chemical system: Different predictions between discrete and continuous models, Lett. Math. Phys., 37 (1996), pp. 285–292. · Zbl 0856.60079
[43] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81 (1977), pp. 2340–2361.
[44] M. Hairer and H. Shen, A central limit theorem for the KPZ equation, Ann. Probab., 45 (2017), pp. 4167–4221. · Zbl 1388.60111
[45] M. Hairer and H. Weber, Large deviations for white-noise driven, nonlinear stochastic PDEs in two and three dimensions, Ann. Fac. Sci. Toulouse Math., 24 (2015), pp. 55–92. · Zbl 1319.60141
[46] P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: Fifty years after Kramers, Rev. Modern Phys., 62 (1990), pp. 251–341.
[47] C. Hartmann and C. Schütte, Efficient rare event simulation by optimal nonequilibrium forcing, J. Statist. Mech., 2012 (2012), art. P11004.
[48] C. R. Heckman, M. A. Hsieh, and I. B. Schwartz, Going with the flow: Enhancing switching rates in multi-gyre systems, J. Dyn. Sys. Meas. Control, 137 (2014), art. 031006.
[49] M. Heymann and E. Vanden-Eijnden, The geometric minimum action method: A least action principle on the space of curves, Comm. Pure Appl. Math., 61 (2008), pp. 1052–1117. · Zbl 1146.60046
[50] E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communications Networks, John Wiley & Sons, 1998.
[51] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science, 288 (2000), pp. 635–639.
[52] H. Jónsson, G. Mills, and K. W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, 1998, pp. 385–404.
[53] D. G. Kendall, An artificial realization of a simple “birth-and-death” process, J. R. Stat. Soc. Ser. B Stat. Methodol., 12 (1950), pp. 116–119. · Zbl 0039.15402
[54] D. A. Kessler and N. M. Shnerb, Extinction rates for fluctuation-induced metastabilities: A real space WKB approach, J. Stat. Phys., 127 (2007), pp. 861–886. · Zbl 1118.91074
[55] E. Khain, M. Khasin, and L. M. Sander, Spontaneous formation of large clusters in a lattice gas above the critical point, Phys. Rev. E, 90 (2014), art. 062702.
[56] Y. S. Kivshar and B. A. Malomed, Dynamics of solitons in nearly integrable systems, Rev. Modern Phys., 61 (1989), pp. 763–915.
[57] R. V. Kohn, M. G. Reznikoff, and E. Vanden-Eijnden, Magnetic elements at finite temperature and large deviation theory, J. Nonlinear Sci., 15 (2005), pp. 223–253. · Zbl 1107.82068
[58] H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7 (1940), pp. 284–304. · Zbl 0061.46405
[59] R. J. Kryscio and C. Lefévre, On the extinction of the S-I-S stochastic logistic epidemic, J. Appl. Prob., 26 (1989), pp. 685–694. · Zbl 0687.92012
[60] R. Kubo, K. Matsuo, and K. Kitahara, Fluctuation and relaxation of macrovariables, J. Stat. Phys., 9 (1973), pp. 51–96.
[61] B. S. Lindley and I. B. Schwartz, An iterative action minimizing method for computing optimal paths in stochastic dynamical systems, Phys. D, 255 (2013), pp. 22–30. · Zbl 1286.65011
[62] D. G. Luchinsky, P. V. E. McClintock, and M. I. Dykman, Analogue studies of nonlinear systems, Rep. Prog. Phys., 61 (1998), pp. 889–997.
[63] B. J. Matkowsky and Z. Schuss, The exit problem for randomly perturbed dynamical systems, SIAM J. Appl. Math., 33 (1977), pp. 365–382, . · Zbl 0369.60071
[64] M. A. Mohamad, W. Cousins, and T. P. Sapsis, A probabilistic decomposition-synthesis method for the quantification of rare events due to internal instabilities, J. Comput. Phys., 322 (2016), pp. 288–308. · Zbl 1352.65027
[65] M. A. Mohamad and T. P. Sapsis, Probabilistic response and rare events in Mathieu’s equation under correlated parametric excitation, Ocean Engrg., 120 (2016), pp. 289–297.
[66] R. O. Moore, Trade-off between linewidth and slip rate in a mode-locked laser model, Opt. Lett., 39 (2014), p. 3042.
[67] R. O. Moore, G. Biondini, and W. L. Kath, A method to compute statistics of large, noise-induced perturbations of nonlinear Schrödinger solitons, SIAM Rev., 50 (2008), pp. 523–549, . · Zbl 1153.35073
[68] R. O. Moore, T. Schaefer, and C. K. Jones, Soliton broadening under random dispersion fluctuations: Importance sampling based on low-dimensional reductions, Optics Comm., 256 (2005), pp. 439–450.
[69] I. N\aasell, The quasi-stationary distribution of the closed endemic SIS model, Adv. Appl. Prob., 28 (1996), pp. 895–932. · Zbl 0854.92020
[70] I. N\aasell, On the time to extinction in recurrent epidemics, J. R. Stat. Soc. Ser. B Stat. Methodol., 61 (1999), pp. 309–330. · Zbl 0917.92023
[71] G. Nieddu, L. Billings, and E. Forgoston, Analysis and control of pre-extinction dynamics in stochastic populations, Bull. Math. Biol., 76 (2014), pp. 3122–3137. · Zbl 1328.92063
[72] G. T. Nieddu, L. Billings, J. H. Kaufman, E. Forgoston, and S. Bianco, Extinction pathways and outbreak vulnerability in a stochastic Ebola model, J. Roy. Soc. Interface, 14 (2017), art. 20160847.
[73] B. \(\O{}\)ksendal, Stochastic Differential Equations: An Introduction with Applications, 6th ed., Universitext, Springer, 2013.
[74] O. Ovaskainen and B. Meerson, Stochastic models of population extinction, Trends Ecol. Evol., 25 (2010), pp. 643–652.
[75] R. Paschotta, A. Schlatter, S. Zeller, H. Telle, and U. Keller, Optical phase noise and carrier-envelope offset noise of mode-locked lasers, Appl. Phys. B, 82 (2005), pp. 265–273.
[76] G. A. Pavliotis, Stochastic Processes and Applications, Springer, 2011.
[77] H. Risken, The Fokker-Planck Equation, Springer-Verlag, 1996. · Zbl 0866.60071
[78] E. Roberts, S. Be’er, C. Bohrer, R. Sharma, and M. Assaf, Dynamics of simple gene-network motifs subject to extrinsic fluctuations, Phys. Rev. E, 92 (2015), art. 062717.
[79] I. B. Schwartz, L. Billings, M. Dykman, and A. Landsman, Predicting extinction rates in stochastic epidemic models, J. Stat. Mech. Theory Exp., 2009 (2009), art. P01005.
[80] I. B. Schwartz, E. Forgoston, S. Bianco, and L. B. Shaw, Converging towards the optimal path to extinction, J. Roy. Soc. Interface, 8 (2011), pp. 1699–1707. · Zbl 1226.92062
[81] M. Shtaif and C. Menyuk, Carrier envelope phase locked modelocking in fiber lasers at ultra-high repetition rates, in CLEO: Science and Innovations, Optical Society of America, 2011, art. CMD6.
[82] R. C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, Comput. Sci. Eng. 12, SIAM, 2014. · Zbl 1284.65019
[83] E. T. Spiller, W. L. Kath, R. O. Moore, and C. J. McKinstrie, Computing large signal distortions and bit-error ratios in DPSK transmission systems, IEEE Photonics Tech. Lett., 17 (2005), pp. 1022–1024.
[84] H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep., 478 (2009), pp. 1–69.
[85] L. S. Tsimring, Noise in biology, Rep. Progr. Phys., 77 (2014), art. 026601.
[86] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier, 2007. · Zbl 0974.60020
[87] E. Vanden-Eijnden and J. Weare, Data Assimilation in the Low Noise, Accurate Observation Regime with Application to the Kuroshio Current, preprint, , 2012.
[88] E. Vanden-Eijnden and J. Weare, Rare event simulation of small noise diffusions, Comm. Pure Appl. Math., 65 (2012), pp. 1770–1803. · Zbl 1268.65015
[89] J. Ye, H. Schnatz, and L. Hollberg, Optical frequency combs: From frequency metrology to optical phase control, IEEE J. Selected Topics Quantum Electronics, 9 (2003), pp. 1041–1058.
[90] W. Zhang, H. Wang, C. Hartmann, M. Weber, and C. Schütte, Applications of the cross-entropy method to importance sampling and optimal control of diffusions, SIAM J. Sci. Comput., 36 (2014), pp. A2654–A2672, . · Zbl 1310.65075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.