×

The stability of a curved, heated boundary layer: linear and nonlinear problems. (English) Zbl 1123.76326

Summary: We consider the stability of high Reynolds number flow past a heated, curved wall. The influence of both buoyancy and curvature, with the appropriate sense, can render a flow unstable to longitudinal vortices. However, conversely each mechanism can make a flow more stable; as with a stable stratification or a convex curvature. This is partially due to their influence on the basic flow and also due to additional terms in the stability equations. In fact the presence of buoyancy in combination with an appropriate local wall gradient can actually increase the wall shear and these effects can lead to supervelocities and the promotion of a wall jet. This leads to the interesting discovery that the flow can be unstable for both concave and convex curvatures. Furthermore, it is possible to observe sustained vortex growth in stably stratified boundary layers over convexly curved walls. The evolution of the modes is considered in both the linear and nonlinear regimes.

MSC:

76E05 Parallel shear flows in hydrodynamic stability
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] DOI: 10.1086/146849 · doi:10.1086/146849
[2] Stott, ANZIAM J. 43 pp 333– (2002)
[3] DOI: 10.1017/S0022112000002561 · Zbl 0989.76021 · doi:10.1017/S0022112000002561
[4] DOI: 10.1017/S0022112083000968 · Zbl 0515.76040 · doi:10.1017/S0022112083000968
[5] DOI: 10.1017/S0022112082002596 · Zbl 0503.76054 · doi:10.1017/S0022112082002596
[6] G, NACA Tech. Mem. pp 1375– (1940)
[7] DOI: 10.1098/rsta.1991.0036 · Zbl 0850.76211 · doi:10.1098/rsta.1991.0036
[8] DOI: 10.1017/S0022112093000357 · Zbl 0774.76038 · doi:10.1017/S0022112093000357
[9] Cebeci, Momentum transfer in boundary layers (1977) · Zbl 0424.76023
[10] Blasius, Z Math. Phys. 56 pp 1– (1908)
[11] DOI: 10.1063/1.868394 · Zbl 0848.76026 · doi:10.1063/1.868394
[12] DOI: 10.1063/1.869368 · Zbl 1185.76863 · doi:10.1063/1.869368
[13] DOI: 10.1063/1.870012 · Zbl 1147.76470 · doi:10.1063/1.870012
[14] DOI: 10.1063/1.858506 · Zbl 0850.76228 · doi:10.1063/1.858506
[15] DOI: 10.1016/S0169-5983(01)00006-5 · Zbl 1075.76539 · doi:10.1016/S0169-5983(01)00006-5
[16] DOI: 10.1017/S0022112092000508 · Zbl 0788.76035 · doi:10.1017/S0022112092000508
[17] Hall, Proc. Roy. Soc. London A 415 pp 421– (1988)
[18] DOI: 10.1017/S0022112093003775 · Zbl 0777.76039 · doi:10.1017/S0022112093003775
[19] Hall, Mathematika 37 pp 151– (1990)
[20] DOI: 10.1017/S0022112088002137 · Zbl 0643.76041 · doi:10.1017/S0022112088002137
[21] DOI: 10.1016/0017-9310(76)90202-7 · Zbl 0339.76031 · doi:10.1016/0017-9310(76)90202-7
[22] DOI: 10.1017/S0022112087002337 · doi:10.1017/S0022112087002337
[23] Scorer, Dynamics of meteorology and climate (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.