×

Geometric entanglement in the Laughlin wave function. (English) Zbl 1516.81034

Summary: We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of \(1/3\). Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, \(N=2\). The constant term does not agree with the expected topological entropy. In view of previous works, our result indicates that the relation between geometric entanglement and topological entropy is very subtle.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
81V70 Many-body theory; quantum Hall effect
81P68 Quantum computation
81S05 Commutation relations and statistics as related to quantum mechanics (general)

References:

[1] Laughlin R B 1983 Phys. Rev. Lett.50 1395 · doi:10.1103/PhysRevLett.50.1395
[2] Tsui D C, Störmer H L and Gossard A C 1982 Phys. Rev. Lett.48 1559 · doi:10.1103/PhysRevLett.48.1559
[3] Yoshioka D 2002 The Quantum Hall Effect (Berlin: Springer) · Zbl 1140.81024 · doi:10.1007/978-3-662-05016-3
[4] Chakraborty T and Pietiläinen P 1995 The Quantum Hall Effects: Integral and Fractional (Berlin: Springer) · doi:10.1007/978-3-642-79319-6
[5] Johnson B L 2002 Am. J. Phys.70 401 · doi:10.1119/1.1446855
[6] Zeng B, Zhai H and Xu Z 2002 Phys. Rev. A 66 042324 · doi:10.1103/PhysRevA.66.042324
[7] Shi Y 2004 J. Phys. A: Math. Gen.37 6807 · Zbl 1059.81194 · doi:10.1088/0305-4470/37/26/014
[8] Haque M, Zozulya O and Schoutens K 2007 Phys. Rev. Lett.98 060401 · Zbl 1228.81087 · doi:10.1103/PhysRevLett.98.060401
[9] Kitaev A and Preskill J 2006 Phys. Rev. Lett.96 110404 · doi:10.1103/PhysRevLett.96.110404
[10] Levin M and Wen X G 2006 Phys. Rev. Lett.96 110405 · doi:10.1103/PhysRevLett.96.110405
[11] Slater J C 1929 Phys. Rev.34 1293 · JFM 55.0535.04 · doi:10.1103/PhysRev.34.1293
[12] Timan A F 1994 Theory of Approximation of Functions of a Real Variable (New York: Dover)
[13] Zhang J M and Kollar M 2014 Phys. Rev. A 89 012504 · doi:10.1103/PhysRevA.89.012504
[14] Zhang J M and Mauser N J 2016 Phys. Rev. A 94 032513 · doi:10.1103/PhysRevA.94.032513
[15] Shimony A 1995 Ann. NY Acad. Sci.755 675 · doi:10.1111/j.1749-6632.1995.tb39008.x
[16] Barnum H and Linden N 2001 J. Phys. A: Math. Gen.34 6787 · Zbl 1008.81006 · doi:10.1088/0305-4470/34/35/305
[17] Wei T C and Goldbart P M 2003 Phys. Rev. A 68 042307 · doi:10.1103/PhysRevA.68.042307
[18] Wei T C, Altepeter J B, Goldbart P M and Munro W J 2004 Phys. Rev. A 70 022322 · Zbl 1227.81091 · doi:10.1103/PhysRevA.70.022322
[19] Wei T C, Ericsson M, Goldbart P M and Munro W J 2004 Quantum Inf. Comput.4 252 · Zbl 1175.81016
[20] Hayashi M, Markham D, Murao M, Owari M and Virmani S 2008 Phys. Rev. A 77 012104 · doi:10.1103/PhysRevA.77.012104
[21] Hübener R, Kleinmann M, Wei T C, González-Guillén C and Gühne O 2009 Phys. Rev. A 80 032324 · doi:10.1103/PhysRevA.80.032324
[22] Aulbach M, Markham D and Murao M 2010 New J. Phys.12 073025 · Zbl 1445.81009 · doi:10.1088/1367-2630/12/7/073025
[23] Tamaryan S, Sudbery A and Tamaryan L 2010 Phys. Rev. A 81 052319 · doi:10.1103/PhysRevA.81.052319
[24] Orús R 2008 Phys. Rev. A 78 062332 · doi:10.1103/PhysRevA.78.062332
[25] Tamaryan L, Park D K and Tamaryan S 2008 Phys. Rev. A 77 022325 · doi:10.1103/PhysRevA.77.022325
[26] Parashar P and Rana S 2011 Phys. Rev. A 83 032301 · doi:10.1103/PhysRevA.83.032301
[27] Martin J, Giraud O, Braun P A, Braun D and Bastin T 2010 Phys. Rev. A 81 062347 · doi:10.1103/PhysRevA.81.062347
[28] Chen L, Xu A and Zhu H 2010 Phys. Rev. A 82 032301 · Zbl 1255.81056 · doi:10.1103/PhysRevA.82.032301
[29] Orús R, Wei T C, Buerschaper O and Van den Nest M 2014 New J. Phys.16 013015 · Zbl 1451.81100 · doi:10.1088/1367-2630/16/1/013015
[30] Benatti F, Floreanini R and Marzolino U 2012 Phys. Rev. A 85 042329 · doi:10.1103/PhysRevA.85.042329
[31] Benatti F, Floreanini R and Marzolino U 2011 J. Phys. B: At. Mol. Opt. Phys.44 091001 · doi:10.1088/0953-4075/44/9/091001
[32] Benatti F, Floreanini R and Marzolino U 2010 Ann. Phys.325 924 · Zbl 1186.81015 · doi:10.1016/j.aop.2010.01.005
[33] Oszmaniec M and Kuś M 2013 Phys. Rev. A 88 052328 · doi:10.1103/PhysRevA.88.052328
[34] Chen L, Chen J, Dokovic D Z and Zeng B 2014 Commun. Math. Phys.333 541 · Zbl 1307.81079 · doi:10.1007/s00220-014-2187-6
[35] Chen L, Dokovic D Z, Grassel M and Zeng B 2014 J. Math. Phys.55 082203 · Zbl 1300.81015 · doi:10.1063/1.4892103
[36] Kaplan T A 2005 Fluct. Noise Lett.5 C15 · doi:10.1142/S0219477505002471
[37] Löwdin P O 1955 Phys. Rev.97 1474 · Zbl 0065.44907 · doi:10.1103/PhysRev.97.1474
[38] Scharf T, Thibon J Y and Wybourne B G 1994 J. Phys. A: Math. Gen.27 4211 · Zbl 0827.05059 · doi:10.1088/0305-4470/27/12/026
[39] Rose H E 2002 Linear Algebra: A Pure Mathematical Approach (Berlin: Springer) · Zbl 1010.15001 · doi:10.1007/978-3-0348-8189-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.