×

Existence and exactness of exponential Riesz sequences and frames for fractal measures. (English) Zbl 1475.28007

The purpose of this paper is the construction of exponential frames and Riesz sequences for a class of fractal measures on \(\mathbb{R}^d\) which are generated by infinite convolutions of discrete measures. To this end, frame towers and Riesz-sequence towers are employed. The authors completely characterize the exactness and over-completeness of the constructed exponential frames or Riesz sequences in terms of the cardinality at each level of the tower. Moreover, they show, using a version of the solution of the Kadison-Singer problem, known as the \(R_\epsilon\)-conjecture, that all these measures contain exponential Riesz sequences of infinite cardinality. Furthermore, it is shown that there are always exponential Riesz sequences of maximal possible Beurling dimension provided that the measure is the middle-third Cantor measure, or, more generally, a self-similar measure satisfying the no-overlap condition.

MSC:

28A80 Fractals
42C15 General harmonic expansions, frames
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces

References:

[1] Bownik, M.; Casazza, P.; Marcus, A.; Speegle, D., Improved bounds in weaver and Feichtinger conjectures, J. Reine Angew. Math., 749, 267-293 (2019) · Zbl 1432.46037 · doi:10.1515/crelle-2016-0032
[2] Bownik, M., The Kadison-Singer problem, Frames and Harmonic Analysis, 63-92 (2018), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1401.42032 · doi:10.1090/conm/706/14218
[3] Bourgain, J.; Tzafriri, L., Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math., 57, 137-224 (1987) · Zbl 0631.46017 · doi:10.1007/BF02772174
[4] Christensen, O., An Introduction to Frames and Riesz Bases (2003), Boston, MA: Birkhäuser, Boston, MA · Zbl 1017.42022 · doi:10.1007/978-0-8176-8224-8
[5] Casazza, P. G.; Tremain, J. C., Revisiting the Bourgain-Tzafriri restricted invertibility theorem, Oper. Matrices, 3, 97-110 (2009) · Zbl 1180.46009 · doi:10.7153/oam-03-04
[6] Dai, X-R; He, X-G; Lai, C-K, Spectral property of Cantor measures with consecutive digits, Adv. Math., 242, 187-208 (2013) · Zbl 1277.28009 · doi:10.1016/j.aim.2013.04.016
[7] Dutkay, D. E.; Haussermann, J.; Lai, C-K, Hadamard triples generate self-affine spectral measures., Tran. Amer. Math. Soc, 371, 1439-1481 (2019) · Zbl 1440.42030 · doi:10.1090/tran/7325
[8] Dutkay, D. E.; Han, D.; Sun, Q., Divergence of the mock and scrambled Fourier series on fractal measures, Trans. Amer. Math. Soc., 366, 2191-2208 (2014) · Zbl 1406.42008 · doi:10.1090/S0002-9947-2013-06021-7
[9] Dutkay, D. E.; Han, D.; Sun, Q.; Weber, E., On the Beurling dimension of exponential frames, Adv. Math., 226, 285-297 (2011) · Zbl 1209.28010 · doi:10.1016/j.aim.2010.06.017
[10] Dutkay, D. E.; Han, D.; Weber, E., Bessel sequences of exponentials on fractal measures, J. Funct. Anal., 261, 2529-2539 (2011) · Zbl 1229.28011 · doi:10.1016/j.jfa.2011.06.018
[11] Dutkay, D. E.; Jorgensen, P. E T., Iterated function systems, Ruelle operators, and invariant projective measures, Math. Comp., 75, 1931-1970 (2006) · Zbl 1117.28008 · doi:10.1090/S0025-5718-06-01861-8
[12] Falconer, K., Techniques in Fractal Geometry (1997), New York: John Wiley & Sons, New York · Zbl 0869.28003
[13] Fuglede, B., em Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., 16, 101-121 (1974) · Zbl 0279.47014 · doi:10.1016/0022-1236(74)90072-X
[14] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30, 713-747 (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[15] Jorgensen, P. E T.; Pedersen, S., Dense analytic subspaces in fractal L^2-spaces, J. Anal. Math., 75, 185-228 (1998) · Zbl 0959.28008 · doi:10.1007/BF02788699
[16] Łaba, I.; Wang, Y., On spectral Cantor measures, J. Funct. Anal., 193, 409-420 (2002) · Zbl 1016.28009 · doi:10.1006/jfan.2001.3941
[17] Lai, C-K; Wang, Y., Non-spectral fractal measures with fourier frames, J. Fractal Geometry, 305-327 (2017) · Zbl 1377.28003
[18] Marcus, A.; Spielman, D.; Srivastava, N., Interlacing families ii: Mixed characteristic polynomials and the kadison-singer problem, Ann. of Math., 182, 327-350 (2015) · Zbl 1332.46056 · doi:10.4007/annals.2015.182.1.8
[19] Strichartz, R. S., Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math., 81, 209-238 (2000) · Zbl 0976.42020 · doi:10.1007/BF02788990
[20] Strichartz, R. S., Convergence of mock Fourier series, J. Anal. Math., 99, 333-353 (2006) · Zbl 1134.42308 · doi:10.1007/BF02789451
[21] Young, R. M., An Introduction to Nonharmonic Fourier Series (2001), San Diego, CA: Academic Press., San Diego, CA · Zbl 0981.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.