×

Simple games versus weighted voting games. (English) Zbl 1415.91028

Deng, Xiaotie (ed.), Algorithmic game theory. 11th international symposium, SAGT 2018, Beijing, China, September 11–14, 2018. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11059, 69-81 (2018).
Summary: A simple game \((N,v)\) is given by a set \(N\) of \(n\) players and a partition of \(2^N\) into a set \(\mathcal{L}\) of losing coalitions \(L\) with value \(v(L)=0\) that is closed under taking subsets and a set \(\mathcal{W}\) of winning coalitions \(W\) with \(v(W)=1\). Simple games with \(\alpha=\min_{p\geq 0}\max_{W\in\mathcal{W},L\in\mathcal{L}}\frac{p(L)}{p(W)}<1\) are exactly the weighted voting games. In [Int. J. Game Theory 43, No. 3, 659–692 (2014; Zbl 1304.91021)], J. Freixas and the third author conjectured that \(\alpha\leq\frac{1}{4}n\) for every simple game \((N,v)\). We confirm this conjecture for two complementary cases, namely when all minimal winning coalitions have size 3 and when no minimal winning coalition has size 3. As a general bound we prove that \(\alpha\leq\frac{2}{7}n\) for every simple game \((N,v)\). For complete simple games, Freixas and Kurz conjectured that \(\alpha=O(\sqrt{n})\). We prove this conjecture up to a \(\ln n\) factor. We also prove that for graphic simple games, that is, simple games in which every minimal winning coalition has size 2, computing \(\alpha\) is NP-hard, but polynomial-time solvable if the underlying graph is bipartite. Moreover, we show that for every graphic simple game, deciding if \(\alpha<a\) is polynomial-time solvable for every fixed \(a>0\).
For the entire collection see [Zbl 1397.91007].

MSC:

91A12 Cooperative games
91B12 Voting theory

Citations:

Zbl 1304.91021

References:

[1] Pashkovich, K.: On critical threshold value for simple games. arXiv:1806.03170v2, 11 June 2018
[2] Balas, E.; Yu, CS, On graphs with polynomially solvable maximum-weight clique problem, Networks, 19, 2, 247-253, 1989 · Zbl 0661.05036 · doi:10.1002/net.3230190206
[3] Bilbao, JM; García, JRF; Jiménez, N.; López, JJ, Voting power in the European Union enlargement, Eur. J. Oper. Res., 143, 1, 181-196, 2002 · Zbl 1073.91539 · doi:10.1016/S0377-2217(01)00334-4
[4] Biro, P.; Kern, W.; Paulusma, D., Computing solutions for matching games, Int. J. Game Theory, 41, 75-90, 2012 · Zbl 1232.91026 · doi:10.1007/s00182-011-0273-y
[5] Bock, A.; Chandrasekaran, K.; Könemann, J.; Peis, B.; Sanitá, L., Finding small stabilizers for unstable graphs, Math. Program., 154, 173-196, 2015 · Zbl 1337.05085 · doi:10.1007/s10107-014-0854-1
[6] Brandstaett, A.; Mosca, R., Maximum weight independent set in \(l\) claw-free graphs in polynomial time, Discrete Appl. Math., 237, 57-64, 2018 · Zbl 1380.05147 · doi:10.1016/j.dam.2017.11.029
[7] Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game Theory. Morgan and Claypool Publishers (2011)
[8] Deineko, VG; Woeginger, GJ, On the dimension of simple monotonic games, Eur. J. Oper. Res., 170, 1, 315-318, 2006 · Zbl 1134.68369 · doi:10.1016/j.ejor.2004.09.038
[9] Elkind, E., Chalkiadakis, G., Jennings, N.R.: Coalition structures in weighted voting games, vol. 178, pp. 393-397 (2008)
[10] Elkind, E.; Goldberg, LA; Goldberg, PW; Wooldridge, M., On the computational complexity of weighted voting games, Ann. Math. Artif. Intell., 56, 2, 109-131, 2009 · Zbl 1185.91081 · doi:10.1007/s10472-009-9162-5
[11] Faigle, U.; Kern, W.; Fekete, S.; Hochstaettler, W., The nucleon of cooperative games and an algorithm for matching games, Math. Program., 83, 195-211, 1998 · Zbl 0920.90142
[12] Freixas, J.; Kurz, S., On \(\alpha \)-roughly weighted games, Int. J. Game Theory, 43, 3, 659-692, 2014 · Zbl 1304.91021 · doi:10.1007/s00182-013-0402-x
[13] Freixas, J.; Molinero, X.; Olsen, M.; Serna, M., On the complexity of problems on simple games, RAIRO Oper. Res., 45, 4, 295-314, 2011 · Zbl 1235.68082 · doi:10.1051/ro/2011115
[14] Freixas, J.; Puente, MA, Dimension of complete simple games with minimum, Eur. J. Oper. Res., 188, 2, 555-568, 2008 · Zbl 1151.91021 · doi:10.1016/j.ejor.2007.03.050
[15] Garey, MR; Johnson, DS, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979, New York: W. H. Freeman & Co., New York · Zbl 0411.68039
[16] Gvozdeva, T.; Hemaspaandra, LA; Slinko, A., Three hierarchies of simple games parameterized by “resource” parameters, Int. J. Game Theory, 42, 1, 1-17, 2013 · Zbl 1282.91029 · doi:10.1007/s00182-011-0308-4
[17] Hegedüs, T.; Megiddo, N., On the geometric separability of Boolean functions, Discrete Appl. Math., 66, 3, 205-218, 1996 · Zbl 0854.68034 · doi:10.1016/0166-218X(94)00161-6
[18] Hof, F.: Weight distribution in matching games. MSc thesis, University of Twente (2016)
[19] Kern, W.; Paulusma, D., Matching games: the least core and the nucleolus, Math. Oper. Res., 28, 294-308, 2003 · Zbl 1082.91016 · doi:10.1287/moor.28.2.294.14477
[20] Koenemann, J., Pashkovich, K., Toth, J.: Computing the nucleolus of weighted cooperative matching games in polynomial time arXiv:1803.03249v2, 9 March 2018
[21] Kurz, S., Molinero, X., Olsen, M.: On the construction of high dimensional simple games. In: Proceedings ECAI 2016, New York, pp. 880-885 (2016) · Zbl 1396.91013
[22] Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical Society (2009)
[23] Peled, UN; Simeone, B., Polynomial-time algorithms for regular set-covering and threshold synthesis, Discrete Appl. Math., 12, 1, 57-69, 1985 · Zbl 0619.05020 · doi:10.1016/0166-218X(85)90040-X
[24] Peters, H., Game Theory: A Multi-Leveled Approach, 2008, Heidelberg: Springer, Heidelberg · Zbl 1147.91001 · doi:10.1007/978-3-540-69291-1
[25] Isbell, JR, A class of majority games, Q. J. Math., 7, 183-187, 1956 · Zbl 0073.13401 · doi:10.1093/qmath/7.1.183
[26] Schrijver, A., A combinatorial algorithm minimizing submodular functions in strongly polynomial time, J. Comb. Theory, Ser. B, 80, 2, 346-355, 2000 · Zbl 1052.90067 · doi:10.1006/jctb.2000.1989
[27] Solymosi, T.; Raghavan, TE, An algorithm for finding the nucleolus of assignment games, Int. J. Game Theory, 23, 119-143, 1994 · Zbl 0811.90128 · doi:10.1007/BF01240179
[28] Taylor, AD; Zwicker, WS, Weighted voting, multicameral representation, and power, Games Econ. Behav., 5, 170-181, 1993 · Zbl 0765.90030 · doi:10.1006/game.1993.1009
[29] Taylor, A.D., Zwicker, W.S.: Simple Games: Desirability Relations, Trading, Pseudoweightings. Princeton University Press (1999) · Zbl 0943.91005
[30] Tsukiyama, S.; Ide, M.; Ariyoshi, H.; Shirakawa, I., A new algorithm for generating all the maximal independent sets, SIAM J. Comput., 6, 3, 505-517, 1977 · Zbl 0364.05027 · doi:10.1137/0206036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.