×

A compact framework for hidden Markov chains with applications to fractal geometry. (English) Zbl 1176.60064

Given nonnegative \(N\times N\) matrices \({\mathbb Z}_1, \cdots, {\mathbb Z}_n\), the author introduces a stochastic process \(V({\mathbb Z}_1, \cdots, {\mathbb Z}_n) = \{V_j, j \geq 1\}\) [see the original article for the precise definition] and proves that, under the condition that \({\mathbb Z}_1+\cdots+ {\mathbb Z}_n\) is irreducible with its greatest eigenvalue being unity, \(V({\mathbb Z}_1, \cdots, {\mathbb Z}_n)\) is a hidden Markov chain which is stationary and ergodic.
The author provides a connection between the Hausdorff dimension of a self-similar measure (with overlaps) and the Shannon entropy of an associated hidden Markov chain. He demonstrates this connection by determining the Hausdorff dimension of the projection on the real line of the uniform measure on the Sierpinski gasket. Further development along this line can be found in the author’s recent article in [J. Math. Anal. Appl. 353, No. 1, 350–361 (2009; Zbl 1172.28003)].

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
28A78 Hausdorff and packing measures
28A80 Fractals

Citations:

Zbl 1172.28003
Full Text: DOI

References:

[1] Billingsley, P. (1965). Ergodic Theory and Information. John Wiley, New York. · Zbl 0141.16702
[2] Birch, J. J. (1962). Approximations for the entropy for functions of Markov chains. Ann. Math. Statist. 33, 930–938. · Zbl 0109.36301 · doi:10.1214/aoms/1177704462
[3] Deliu, A., Geronimo, J. S., Shonkwiler, R. and Hardin, D. (1991). Dimensions associated with recurrent self-similar sets. Math. Proc. Camb. Philos. Soc. 110, 327–336. · Zbl 0742.28002 · doi:10.1017/S0305004100070407
[4] Edgar, G. A. (1998). Integral, Probability and Fractal Measures. Springer, New York. · Zbl 0893.28001
[5] Falconer, K. (1997). Techniques in Fractal Geometry. John Wiley, New York. · Zbl 0869.28003
[6] Kenion, R. W. (1997). Projecting the one-dimensional Sierpiński gasket. Israel J. Math. 97, 221–238. · Zbl 0871.28006 · doi:10.1007/BF02774038
[7] Lau, K. S. and Ngai, S. M. (2000). Second-order self-similar identities and multifractal decompositions. Indiana Univ. Math. J. 49, 925–972. · Zbl 0980.28004 · doi:10.1512/iumj.2000.49.1789
[8] Lau, K. S., Ngai, S. M. and Rao, H. (2001). Iterated function systems with overlaps and self-similar measures. J. London Math. Soc. 63, 99–116. · Zbl 1019.28005 · doi:10.1112/S0024610700001654
[9] Mattila, P. (1995). Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge University Press. · Zbl 0819.28004
[10] Mattila, P., Morán, M. and Rey, J.-M. (2000). Dimension of a measure. Studia Math. 142, 219–253. · Zbl 1008.28005
[11] Ngai, S. M. (1997). A dimension result arising from the \(L^q\)-spectrum of a measure. Proc. Amer. Math. Soc. 125, 2943–2951. JSTOR: · Zbl 0886.28006 · doi:10.1090/S0002-9939-97-03974-9
[12] Ngai, S. M. (1997). Multifractal decomposition for a family of overlapping self-similar measures. In Fractal Frontiers , eds M. M. Novak and T. G. Dewey, World Scientific Publishing, River Edge, NJ, pp. 151–161. · Zbl 1026.28009
[13] Nguyen, N. (2001). Iterated function systems of finite type and the weak separation property. Proc. Amer. Math. Soc. 130, 483–487. JSTOR: · Zbl 0986.28010 · doi:10.1090/S0002-9939-01-06063-4
[14] Peres, Y. and Solomyak, B. (1996). Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3, 231–239. · Zbl 0867.28001 · doi:10.4310/MRL.1996.v3.n2.a8
[15] Schief, A. (1994). Separation properties for self-similar sets. Proc. Amer. Math. Soc. 122, 111–115. JSTOR: · Zbl 0807.28005 · doi:10.2307/2160849
[16] Testud, B. (2006). Measures quasi-Bernoulli au sens faible: résultats et exemples. Ann. Inst. H. Poincaré Prob. Statist. 42, 1–35. · Zbl 1134.28303 · doi:10.1016/j.anihpb.2005.01.002
[17] Walters, P. (1982). An Introduction to Ergodic Theory. Springer, New York. · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.