×

Application of variational iteration method for Hamilton-Jacobi-Bellman equations. (English) Zbl 1270.49004

Summary: In this paper, we use the variational iteration method (VIM) for optimal control problems. First, optimal control problems are transferred to Hamilton-Jacobi-Bellman (HJB) equation as a nonlinear first order hyperbolic partial differential equation. Then, the basic VIM is applied to construct a nonlinear optimal feedback control law. By this method, the control and state variables can be approximated as a function of time. Also, the numerical value of the performance index is obtained readily. In view of the convergence of the method, some illustrative examples are presented to show the efficiency and reliability of the presented method.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations

References:

[1] Bellman, R. E., Dynamic Programming (1957), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0077.13605
[2] Bellman, R. E.; Dreyfus, S. E., Applied Dynamic Programming (1962), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0106.34901
[3] Bryson, A. E.; Ho, Y. C., Applied Optimal Control (1975), Hemisphere Publishing Corporation: Hemisphere Publishing Corporation Washangton, DC
[4] Fleming, W. H.; Rishel, C. J., Deterministic and Stochastic Optimal Control (1975), Springer Verlag: Springer Verlag New York · Zbl 0323.49001
[5] Fleming, W. H.; Soner, H. M., Controlled Markov Processes and Viscosity Solutions (2006), Springer · Zbl 1105.60005
[6] Kirk, D. E., Optimal Control Theory An Introduction (1970), Prentice-Hall: Prentice-Hall Englewood Cliffs
[7] Pantelev, A. B.; Bortakovski, A. C.; Letova, T. A., Some Issues and Examples in Optimal Control (1996), MAI Press: MAI Press Moscow, (in Russian)
[8] Pinch, E. R., Optimal Control and the Calculus of Variations (1993), Oxford University Press: Oxford University Press London · Zbl 0776.49001
[9] Pontryagin, L. S., The Mathematical Theory of Optimal Processes (1962), Interscience, John Wiley and Sons · Zbl 0102.32001
[10] Rubio, J. E., Control and Optimization: The Linear Treatment of Non-linear Problems (1986), Manchester University Press: Manchester University Press Manchester · Zbl 1095.49500
[11] Athans, M., The status of optimal control theory and application for deterministic systems, IEEE Trans. Autom. Control, 11, 580-596 (1699)
[12] Bryson, A. E., Optimal control - 1950 to 1985, IEEE Control Syst. Mag., 16, 26-33 (1996)
[13] Sussmann, H. J.; Willems, J. C., 300 years of optimal control: from the Brachystochrone to the maximum principle, IEEE Control Syst. Mag., 17, 32-44 (1997) · Zbl 1014.49001
[14] Ahmed, N. U., Elements of Finite-Dimensional Systems and Control Theory (1988), Longman Scientific and Technical: Longman Scientific and Technical England · Zbl 0658.93002
[15] Craven, B. D., Control and Optimization (1995), Chapman and Hall: Chapman and Hall London · Zbl 0915.49002
[16] Miele, A., Gradient algorithms for the optimization of dynamic systems, (Control and Dynamic Systems: Advances in Theory and Applications, vol. 16 (1980), Academic Press: Academic Press New York), 1-52
[17] Sakawa, Y.; Shindo, Y., On the global convergence of an algorithm for optimal control, IEEE Trans. Autom. Control, AC-25, 1149-1153 (1980) · Zbl 0489.49017
[18] Teo, K. L.; Wong, K. H., A Unified Computational Approach to Optimal Control Problems (1991), Longman Scientific and Technical: Longman Scientific and Technical England · Zbl 0747.49005
[19] Vlassenbroeck, J., A chebyshev polynomial method for optimal control with state constraints, Automatica, 24, 4, 499-506 (1988) · Zbl 0647.49023
[21] Jaddu, H. M., Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials, J. Franklin Inst., 339, 479-498 (2002) · Zbl 1010.93507
[22] Elnagar, G. N.; Razzaghi, M., A Chebyshev spectral method for the solution of nonlinear optimal control problems, Appl. Math. Model., 21, 5, 255-260 (1997) · Zbl 0886.65066
[23] El-Kady, M.; Elbarbary, E. M.E., A Chebyshev expansion method for solving nonlinear optimal control problems, Appl. Math. Comput., 129, 171-182 (2002) · Zbl 1057.49020
[24] Kafash, B.; Delavarkhalafi, A.; Karbassi, S. M., Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems, Sci. Iran. D, Comput. Sci. Eng. Electr. Eng., 19, 3, 795-805 (2012) · Zbl 1267.49028
[26] Fakharian, A.; Hamidi Beheshti, M. T.; Davari, A., Solving the Hamilton-Jacobi-Bellman equation using Adomian decomposition method, Int. J. Comput. Math., 87, 2769-2785 (2010) · Zbl 1202.65082
[27] Saberi Nik, H.; Effati, S.; Shirazian, M., An approximate-analytical solution for the Hamilton-Jacobi-Bellman equation via homotopy perturbation method, Appl. Math. Model., 36, 5614-5623 (2012) · Zbl 1254.65107
[28] Effati, S.; Saberi Nik, H., Solving a class of linear and nonlinear optimal control problems by homotopy perturbation method, IMA J. Math. Control Inform., 28, 4, 539-553 (2011) · Zbl 1251.49037
[29] Huanga, C. S.; Wangb, S.; Chenc, C. S.; Lia, Z. C., Aradial basis collocation method for Hamilton-Jacobi-Bellman equations, Automatica, 42, 2201-2207 (2006) · Zbl 1104.49024
[32] Teo, K. L.; Goh, C. J.; Wong, K. H., A Unified Computational Approach to Optimal Control Problems (1991), Longman Scientific and Technical: Longman Scientific and Technical London · Zbl 0747.49005
[33] He, J. H., A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 2, 4, 230-235 (1997) · Zbl 0923.35046
[34] He, J. H., Variational iteration method for delay differential equations, Commun. Nonlinear Sci. Numer. Simul., 2, 4, 235-236 (1997) · Zbl 0924.34063
[35] He, J. H., Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. Methods Appl. Mech. Eng., 167, 69-73 (1998) · Zbl 0932.65143
[36] He, J. H., A variational iteration method - a kind of nonlinear analytical technique: some examples, Int. J. Nonlinear Mech., 34, 4, 699-708 (1999) · Zbl 1342.34005
[37] He, J. H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng., 167, 1-2, 57-68 (1998) · Zbl 0942.76077
[38] He, J. H., Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. Methods Appl. Mech. Eng., 167, 1-2, 69-73 (1998) · Zbl 0932.65143
[39] He, J. H.; Wu, X. H., Construction of solitary solution and compaction-like solution by variational iteration method, Chaos Solitons Fract., 29, 1, 108-113 (2006) · Zbl 1147.35338
[40] He, J. H., Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20, 10, 1141-1199 (2006) · Zbl 1102.34039
[41] He, J. H., Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114, 2-3, 115-123 (2000) · Zbl 1027.34009
[42] Bildik, N.; Konuralp, A., The use of Variational iteration method differential transform methods and Adomian decomposition method for solving different type of nonlinear partial differential equation, Int. J. Nonlinear Sci. Numer. Simul., 7, 65-70 (2006) · Zbl 1401.35010
[43] Dehghan, M.; Tatari, M., Identifying and unknown function in parabolic equation with overspecified data via He’s VIM, Chaos Solitons Fract., 36, 157-166 (2008) · Zbl 1152.35390
[44] Sweilam, N. H., Variational iteration method for solving cubic nonlinear Schrodinger equation, J. Comput. Appl. Math., 207, 155-163 (2007) · Zbl 1119.65098
[45] Tatari, M.; Dehghan, M., Solution of problems in calculus of variations via He’s variational iteration method, Phys. Lett. A, 362, 401-406 (2007) · Zbl 1197.65112
[46] Yousefi, S. A.; Dehghan, M.; Lotfi, A., Finding the optimal control of linear systems via He-s variational iteration method, Int. J. Comput. Math., 87, 5, 1042-1050 (2010) · Zbl 1357.65109
[48] Wazwaz, A. M., Partial Differential Equations and Solitary Waves Theory (2009), Springer · Zbl 1175.35001
[49] Wazwaz, A. M., The variational iteration method for analytic treatment for linear and nonlinear ODEs, Appl. Math. Comput., 212, 120-134 (2009) · Zbl 1166.65353
[50] Tatari, M.; Dehghan, M., On the convergence of He-s variational iteration method, J. Comput. Appl. Math., 207, 121-128 (2007) · Zbl 1120.65112
[51] Odibat, Z. M., A study on the convergence of variational iteration method, Math. Comput. Model., 51, 1181-1192 (2010) · Zbl 1198.65147
[52] Geng, F., A modified variational iteration method for solving Riccati differential equations, Comput. Math. Appl., 60, 1868-1872 (2010) · Zbl 1205.65229
[53] Atkinson, K., Theoretical Numerical Analysis, A Functional Analysis Framework (2009), Springer · Zbl 1181.47078
[54] El-Gindy, T. M.; El-Hawary, H. M.; Salim, M. S.; El-Kady, M., A Chebyshev approximation for solving optimal control problems, Comput. Math. Appl., 29, 35-45 (1995) · Zbl 0833.65057
[55] Jajarmi, A.; Pariz, N.; Vahidian, A.; Effati, S., A novel Modal series representation approach to solve a class of nonlinear optimal control problems, Int. J. Innovative Comput. Inform. Control, 7, 3, 1413-1425 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.