×

Chaotic exits from a weakly magnetized Schwarzschild black hole. (English) Zbl 1482.83073

Summary: A charged particle kicked from an initial circular orbit around a weakly magnetized Schwarzschild black hole undergoes transient chaotic motion before either getting captured by the black hole or escaping upstream or downstream with respect to the direction of the magnetic field. These final states form basins of attraction in the space of initial states. We provide a detailed numerical study of the basin structure of this initial state space. We find it to possess the peculiar Wada property: each of its basin boundaries is shared by all three basins. Using basin entropy as a measure, we show that uncertainty in predicting the final exit state increases with stronger magnetic interaction. We also present an approximate analytic expression of the critical escape energy for a vertically-kicked charged particle, and discuss how this depends on the strength of the magnetic interaction.

MSC:

83C57 Black holes
83C50 Electromagnetic fields in general relativity and gravitational theory
78A30 Electro- and magnetostatics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

References:

[1] Zeraoulia, E., Models and Applications of Chaos Theory in Modern Sciences (2012), Boca Raton, FL: CRC Press, Boca Raton, FL
[2] Seoane, J. M.; Sanjuán, M. A F., New developments in classical chaotic scattering, Rep. Prog. Phys., 76 (2013) · doi:10.1088/0034-4885/76/1/016001
[3] Barrio, R.; Blesa, F.; Serrano, S., Bifurcations and Chaos in Hamiltonian systems, Int. J. Bifurcation Chaos, 20, 1293-1319 (2010) · Zbl 1193.65214 · doi:10.1142/s0218127410026496
[4] Bleher, S.; Grebogi, C.; Ott, E., Bifurcation to chaotic scattering, Physica D, 46, 87-121 (1990) · Zbl 0713.58039 · doi:10.1016/0167-2789(90)90114-5
[5] Gaspard, P., Chaos, Scattering and Statistical Mechanics (1998), Cambridge: Cambridge University Press, Cambridge · Zbl 0915.00011
[6] Al Zahrani, A. M.; Frolov, V. P.; Shoom, A. A., Critical escape velocity for a charged particle moving around a weakly magnetized Schwarzschild black hole, Phys. Rev. D, 87 (2013) · doi:10.1103/physrevd.87.084043
[7] Al Zahrani, A. M., Escape of charged particles moving around a weakly magnetized Kerr black hole, Phys. Rev. D, 90 (2014) · doi:10.1103/physrevd.90.044012
[8] Daza, A.; Wagemakers, A.; Georgeot, B.; Guéry-Odelin, D.; Sanjuán, M. A F., Basin entropy: a new tool to analyze uncertainty in dynamical systems, Sci. Rep., 6, 31416 (2016) · doi:10.1038/srep31416
[9] Daza, A.; Shipley, J. O.; Dolan, S. R.; Sanjuán, M. A F., Wada structures in a binary black hole system, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.084050
[10] Stuchlík, Z.; Martin, K., Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field, Eur. Phys. J. C, 76, 32 (2016) · doi:10.1140/epjc/s10052-015-3862-2
[11] Kopáček, O.; Karas, V., Near-horizon structure of escape zones of electrically charged particles around weakly magnetized rotating black hole, Astrophys. J., 853, 53 (2018) · doi:10.3847/1538-4357/aaa45f
[12] Pánis, R.; Kološ, M.; Stuchlík, Z., Determination of chaotic behaviour in time series generated by charged particle motion around magnetized Schwarzschild black holes, Eur. Phys. J. C, 79, 479 (2019) · doi:10.1140/epjc/s10052-019-6961-7
[13] Tursunov, A.; Kološ, M.; Stuchlík, Z.; Gal’tsov, D. V., Radiation reaction of charged particles orbiting a magnetized Schwarzschild black hole, Astrophys. J., 861, 2 (2018) · doi:10.3847/1538-4357/aac7c5
[14] Horowitz, G. T.; Teukolsky, S. A., Black holes, Rev. Mod. Phys., 71, S180-S186 (1999) · doi:10.1103/revmodphys.71.s180
[15] Punsly, B., Black Hole Gravitohydromagnetics (2009), Berlin: Springer, Berlin · Zbl 1157.83006
[16] Regev, O., Chaos and Complexity in Astrophysics (2006), Cambridge: Cambridge University Press, Cambridge
[17] Stern, B. E.; Poutanen, J., A photon breeding mechanism for the high-energy emission of relativistic jets, Mon. Not. R. Astron. Soc., 372, 1217-1226 (2006) · doi:10.1111/j.1365-2966.2006.10923.x
[18] Stern, B. E.; Poutanen, J., Radiation from relativistic jets in Blazars and the efficient dissipation of their bulk energy via photon breeding, Mon. Not. R. Astron. Soc., 383, 1695-1712 (2008) · doi:10.1111/j.1365-2966.2007.12706.x
[19] Winters, W. F.; Balbus, S. A.; Hawley, J. F., Chaos in turbulence driven by the magnetorotational instability, Mon. Not. R. Astron. Soc., 340, 519-524 (2003) · doi:10.1046/j.1365-8711.2003.06315.x
[20] Suková, P.; Grzedzielski, M.; Janiuk, A., Chaotic and stochastic processes in the accretion flows of the black hole x-ray binaries revealed by recurrence analysis, Astron. Astrophys., 586, A143 (2016) · doi:10.1051/0004-6361/201526692
[21] Misner, C. W.; Thorne, K. S.; Wheeler, J. A., Gravitation (2017), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1375.83002
[22] Wald, R. M., Black hole in a uniform magnetic field, Phys. Rev. D, 10, 1680-1685 (1974) · doi:10.1103/physrevd.10.1680
[23] Aliev, A. N.; Gal’tsov, D. V., Magnetized black holes, Sov. Phys. - Usp., 32, 75-92 (1989) · doi:10.1070/pu1989v032n01abeh002677
[24] Frolov, V. P.; Shoom, A. A., Motion of charged particles near weakly magnetized Schwarzschild black hole, Phys. Rev. D, 82 (2010) · doi:10.1103/physrevd.82.084034
[25] Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields (1980), Portsmouth, NH: Heinemann, Portsmouth, NH · Zbl 0178.28704
[26] Blesa, F.; Seoane, J. M.; Barrio, R.; Sanjuán, M. A F., Effects of periodic forcing in chaotic scattering, Phys. Rev. E, 89 (2014) · doi:10.1103/physreve.89.042909
[27] Aguirre, J.; Vallejo, J. C.; Sanjuán, M. A F., Wada basins and chaotic invariant sets in the Hénon-Heiles system, Phys. Rev. E, 64 (2001) · doi:10.1103/physreve.64.066208
[28] Seoane, J. M.; Aguirre, J.; Sanjuán, M. A F.; Lai, Y. C., Basin topology in dissipative chaotic scattering, Chaos, 16 (2006) · Zbl 1146.37362 · doi:10.1063/1.2173342
[29] Bernal, J. D.; Seoane, J. M.; Sanjuán, M. A F., Uncertainty dimension and basin entropy in relativistic chaotic scattering, Phys. Rev. E, 97 (2018) · doi:10.1103/physreve.97.042214
[30] Frolov, A. V.; Larsen, A. L., Chaotic scattering and capture of strings by a black hole, Class. Quantum Grav., 16, 3717-3724 (1999) · Zbl 0939.83057 · doi:10.1088/0264-9381/16/11/316
[31] Liu, C-Y; Lee, D-S; Lin, C-Y, Geodesic motion of neutral particles around a Kerr-Newman black hole, Class. Quantum Grav., 34 (2017) · Zbl 1381.83071 · doi:10.1088/1361-6382/aa903b
[32] Aguirre, J.; Viana, R. L.; Sanjuán, M. A F., Fractal structures in nonlinear dynamics, Rev. Mod. Phys., 81, 333-386 (2009) · doi:10.1103/revmodphys.81.333
[33] Grebogi, C.; McDonald, S. W.; Ott, E.; Yorke, J. A., Final state sensitivity: an obstruction to predictability, Phys. Lett. A, 99, 415-418 (1983) · doi:10.1016/0375-9601(83)90945-3
[34] Ott, E., Chaos in Dynamical Systems (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1006.37001
[35] Bautista, J., Critical escape energy data for a charged particle in a weakly magnetized Schwarzschild black hole (2020)
[36] Yoneyama, K., Theory of continuous set of points (not finished), Tohoku Math. J., First Series, 12, 43-158 (1917) · JFM 46.0303.01
[37] Hocking, J. G.; Young, G. S., Topology (1961), New York: Dover, New York · Zbl 0135.22701
[38] Aguirre, J.; Sanjuán, M. A F., Unpredictable behavior in the Duffing oscillator: Wada basins, Physica D, 171, 41-51 (2002) · Zbl 1008.37011 · doi:10.1016/s0167-2789(02)00565-1
[39] Nusse, H. E.; Yorke, J. A., Wada basin boundaries and basin cells, Physica D, 90, 242-261 (1996) · Zbl 0886.58072 · doi:10.1016/0167-2789(95)00249-9
[40] Kennedy, J.; Yorke, J. A., Basins of Wada, Physica D, 51, 213-225 (1991) · Zbl 0746.58054 · doi:10.1016/0167-2789(91)90234-z
[41] Daza, A.; Wagemakers, A.; Sanjuán, M. A F.; Yorke, J. A., Testing for basins of Wada, Sci. Rep., 5, 1-7 (2015) · doi:10.1038/srep16579
[42] Wagemakers, A.; Daza, A.; Sanjuán, M. A F., The saddle-straddle method to test for Wada basins, Commun. Nonlinear Sci., 84 (2020) · Zbl 1452.37030 · doi:10.1016/j.cnsns.2020.105167
[43] Daza, A.; Wagemakers, A.; Sanjuán, M. A F., Ascertaining when a basin is Wada: the merging method, Sci. Rep., 8, 1-8 (2018) · doi:10.1038/s41598-018-28119-0
[44] Zhang, Y.; Luo, G., Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map, Phys. Lett. A, 377, 1274-1281 (2013) · Zbl 1290.37027 · doi:10.1016/j.physleta.2013.03.027
[45] Menck, P. J.; Heitzig, J.; Marwan, N.; Kurths, J., How basin stability complements the linear-stability paradigm, Nat. Phys., 9, 89-92 (2013) · doi:10.1038/nphys2516
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.