×

Synthesis of stochastic fault tolerant control systems with random FDI delay. (English) Zbl 1162.93340

Summary: The synthesis of fault tolerant control (FTC) for stochastic stability and \(H_{\infty}\) performance is studied. Occurrence of faults in the system is governed by a Markov Chain, so the open-loop system is modelled as a linear system with Markovian jumping parameters. The fault detection and isolation (FDI) decision is modelled as another random process that will indicate the fault mode after an exponentially distributed random delay. This stochastic formulation of FTC concerns the random nature of faults and the effect of random fault detection delay on the overall system, and can be regarded as an extension to the traditional reconfigurable control problem. In this paper, output feedback controllers are designed using an iterative LMI algorithm for mean exponential stability (MES) and the \(H_{\infty}\) performance. Model uncertainties and external disturbance are also considered in the robust design.

MSC:

93B50 Synthesis problems
93E03 Stochastic systems in control theory (general)
90B25 Reliability, availability, maintenance, inspection in operations research
Full Text: DOI

References:

[1] Aberkane S, Proceedings of CDC-ECC’05 pp 3783– (2005)
[2] Apkarian P, IEEE Trans. AC 46 pp 1941– (2001)
[3] DOI: 10.1007/BF00939145 · Zbl 0549.93045 · doi:10.1007/BF00939145
[4] DOI: 10.1109/TAC.2003.811263 · Zbl 1364.93205 · doi:10.1109/TAC.2003.811263
[5] Chen J, Robust Model-based Fault Diagnosis for Dynamic Systems (1999) · Zbl 0920.93001
[6] Cheng C, Proceedings of the 42nd IEEE Conf. on Deci. and Cont. (CDC’03) pp 2484– (2003)
[7] Costa OLV, Discrete-time Markov Jump Linear Systems (2005) · doi:10.1007/b138575
[8] DOI: 10.1109/87.918902 · doi:10.1109/87.918902
[9] DOI: 10.1002/1099-1115(200011)14:7<725::AID-ACS618>3.0.CO;2-Q · Zbl 0983.93016 · doi:10.1002/1099-1115(200011)14:7<725::AID-ACS618>3.0.CO;2-Q
[10] DOI: 10.1016/S0005-1098(01)00210-2 · Zbl 0991.93125 · doi:10.1016/S0005-1098(01)00210-2
[11] Fang Y, IEEE Trans. AC 47 pp 1590– (2002)
[12] DOI: 10.1137/S0363012903434753 · Zbl 1139.93037 · doi:10.1137/S0363012903434753
[13] Ghaoui LE, IEEE Trans. AC 42 pp 1171– (1997)
[14] DOI: 10.1137/S0363012999349553 · Zbl 0997.93032 · doi:10.1137/S0363012999349553
[15] Leon-Garcia A, Probability and Random Processes for Electrical Engineering (1989) · Zbl 0681.60002
[16] DOI: 10.1016/j.automatica.2005.01.002 · Zbl 1091.93019 · doi:10.1016/j.automatica.2005.01.002
[17] Mahmoud MM, IEEE Trans. AC 46 pp 1810– (2001)
[18] DOI: 10.1081/SAP-120020431 · Zbl 1118.93353 · doi:10.1081/SAP-120020431
[19] Mahmoud MM, Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis (2003)
[20] Mariton M, Int. J. Contr. 49 pp 981– (1989)
[21] DOI: 10.1049/ip-d.1988.0038 · Zbl 0647.93027 · doi:10.1049/ip-d.1988.0038
[22] Patton RJ, Fault Diagnosis in Dynamic System, Theory and Applications (1989)
[23] Patton RJ, Proceedings of IFAC SAFEPROCESS’97 pp 1033– (1997)
[24] DOI: 10.1023/A:1022683311870 · Zbl 1026.93504 · doi:10.1023/A:1022683311870
[25] DOI: 10.1002/oca.722 · Zbl 1073.93568 · doi:10.1002/oca.722
[26] DOI: 10.1080/00207179308934397 · Zbl 0808.93067 · doi:10.1080/00207179308934397
[27] Tao F, Proceedings of CDC-ECC’05 pp 6274– (2005)
[28] DOI: 10.1016/S0005-1098(02)00018-3 · Zbl 1015.93030 · doi:10.1016/S0005-1098(02)00018-3
[29] DOI: 10.1002/1099-1115(200011)14:7<775::AID-ACS621>3.0.CO;2-4 · Zbl 1016.93025 · doi:10.1002/1099-1115(200011)14:7<775::AID-ACS621>3.0.CO;2-4
[30] DOI: 10.1109/TAC.2004.832201 · Zbl 1365.93250 · doi:10.1109/TAC.2004.832201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.