×

The description, classification, and reality of material and physical symmetries. (English) Zbl 0811.73002

We reconsider the definitions of both material symmetries and physical symmetries which are described in terms of point groups, i.e. subgroups of the full orthogonal group, because these two concepts are often confused, and the classical descriptions of physical symmetry for inelastic behaviour of materials are impracticable. All two- and three- dimensional point groups are classified into two types: compact and non- compact. The reality of every compact point group in the description of a material or a physical symmetry is justified in four aspects, that is: (i) point groups characterized by a finite set of tensors, (ii) Hilbert’s theorem for integrity bases, (iii) correlation between integrity bases and function bases (generalization of Wineman and Pipkin’s theorem), and (iv) physical reality.

MSC:

74E15 Crystalline structure
74A20 Theory of constitutive functions in solid mechanics
20F99 Special aspects of infinite or finite groups
Full Text: DOI

References:

[1] Adams, B. L., Boehler, J. P., Guidi, M., Onat, E. T.: Group theory and representation of microstructure and mechanical behavior of polycrystals. J. Mech. Phys. Solids40, 723-737 (1992). · Zbl 0760.73058 · doi:10.1016/0022-5096(92)90001-I
[2] Armstrong, M. A.: Groups and symmetry. Berlin, Heidelberg, New York, Tokyo: Springer 1988. · Zbl 0663.20001
[3] Bass, J.: Cours de Math?matiques, tome I, pp. 177-179. Paris: Masson 1968.
[4] Boehler, J. P.: A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. ZAMM59, 157-167 (1979). · Zbl 0416.73002 · doi:10.1002/zamm.19790590403
[5] Boehler, J. P. (ed.): Applications of tensor functions in solid mechanics. Wien, New York: Springer 1987. · Zbl 0657.73001
[6] Green, E., Rivlin, R. S.: The mechanics of non-linear materials with memory. Arch. Rat. Mech. Anal.1, 1-34 (1957). · Zbl 0079.17602 · doi:10.1007/BF00297992
[7] Hahn, T.: Space-group symmetry. International tables for crystallography, vol. A, 2nd ed. Dordrecht: D. Reidel 1987. · Zbl 1371.82119
[8] Neumann, F. E.: Vorlesungen ?ber die Theorie der Elastizit?t der festen K?rper. Leipzig 1885. · JFM 17.0948.01
[9] Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rat. Mech. Anal.2, 197-226 (1958). · Zbl 0083.39303 · doi:10.1007/BF00277929
[10] Noll, W.: A new mathematical theory of simple materials. Arch. Rat. Mech. Anal.48, 1-50 (1972). · Zbl 0271.73006 · doi:10.1007/BF00253367
[11] Nye, J. F.: Physical properties of crystals. London. New York: Oxford University Press 1957. · Zbl 0079.22601
[12] Reiner, M.: A mathematical theory of dilatancy. Am. J. Math.67, 350-362 (1945). · Zbl 0063.06464 · doi:10.2307/2371950
[13] Rivlin, R. S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Phil. Trans. Roy. Soc. London Ser.A 241, 379-397 (1948). · Zbl 0031.42602 · doi:10.1098/rsta.1948.0024
[14] Rivlin, R. S.: The hydrodynamics of non-Newtonian fluids. I. Proc. Roy. Soc. London Ser.A 193, 260-281 (1948). · Zbl 0031.43001 · doi:10.1098/rspa.1948.0044
[15] Rivlin, R. S., Smith, G. F.: The description of material symmetry in materials with memory. Int. J. Solids Struct.23, 325-334 (1987). · Zbl 0604.73002 · doi:10.1016/0020-7683(87)90063-1
[16] Smith, G. F., Rivlin, R. S.: The strain-energy function for anisotropic elastic materials. Trans. Am. Math. Soc.88, 175-193 (1958). · Zbl 0089.23505 · doi:10.1090/S0002-9947-1958-0095618-2
[17] Spencer, A. J. M.: Theory of invariants. In: Continuum physics, vol. I (Eringen, A. C., ed.), New York, London: Academic Press 1971. · Zbl 0236.05110
[18] Truesdell, C., Noll, W.: Non-linear field theories of mechanics. Encyclopedia of Physics, III/3 (Fl?gge, S., ed.) Berlin, Heidelberg: Springer 1965. · Zbl 0779.73004
[19] Vainshtein, B. K.: Modern crystallography I. Berlin, Heidelberg, New York: Springer 1981.
[20] Voigt, W.: Lehrbuch der Krystallphysik. Leipzig: Teubner 1928.
[21] Weyl, H.: The classical groups. Princeton: University Press 1939. · Zbl 0020.20601
[22] Winemann, A. S., Pipkin, A. C.: Material symmetry restrictions on constitutive equations. Arch. Rat. Mech. Anal.17, 184-214 (1964). · Zbl 0126.40604 · doi:10.1007/BF00282437
[23] Yong-Zhong, H., Piero, G. D.: On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor. J. Elasticity25, 203-246 (1991). · Zbl 0755.73015 · doi:10.1007/BF00040927
[24] Zheng, Q.-S., Spencer, A. J. M.: Tensors which characterize anisotropies. Int. J. Eng. Sci. (in press). · Zbl 0772.73009
[25] Zheng, Q.-S., Betten, J., Spencer, A. J. M.: The formulation of constitutive equations for fibre-reinforced composites-planes problems, part I. Ing.-Arch. (in press). · Zbl 0804.73037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.