×

Lectures on Hodge theory and algebraic cycles. (English) Zbl 1346.14025

These notes are lectures, a sequel to the author’s [Bol. Soc. Mat. Mex., III. Ser. 7, No. 2, 137–192 (2001; Zbl 1092.14013)]. The theme is precisely described by the keywords: Chow group; Hodge theory; algebraic cycle; regulator; Deligne cohomology; Beilinson-Hodge conjecture; Abel-Jacobi map; Bloch-Beilinson filtration. We have here a terse report of the past and present status of that fascinating part af algebraic geometry which deals with the Abel-Jacobi map as a tool for understanding the structure of algebraic cycles. It is quite useful, also because the author gives an interesting account of his and his collaborators’ recent work. Moreover we find a discussion of several conjectures and hints of the proofs which Lewis found to solve some of them. The bulk of the exposition centers on the cycle class maps, called either regulators or the Abel-Jacobi maps, which Bloch and Beilinson had constructed. The goal here is to describe them in an explicit way and then to apply the found formulas concretely. A brilliant student could profit greatly by this manual’s perusal, still he should be adviced that the discussion of ideas and proofs is necessarily sketchy and further understanding requires consultation of the sources.

MSC:

14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
14C25 Algebraic cycles
19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects)
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)

Citations:

Zbl 1092.14013
Full Text: DOI

References:

[1] Arapura, D.: The Leray spectral sequence is motivic. Invent. Math. 160(3), 567-589 (2005) · Zbl 1083.14011 · doi:10.1007/s00222-004-0416-x
[2] Arapura, D., Kumar, M.: Beilinson-Hodge cycles on semiabelian varieties. Math. Res. Lett. 16(4), 557-562 (2009) · Zbl 1182.14005 · doi:10.4310/MRL.2009.v16.n4.a1
[3] Angel, P.L., Lewis, J.D. et al.: A going-up theorem for \[KK\]-theory and normal functions. Manuscript in progress
[4] Asakura, M.: Motives, de Rham, algebraic: cohomology. In: Gordon, B., Lewis, J., Müller-Stach, S., Saito, S., Yui, N. (eds.) The Arithmetic and Geometry of Algebraic Cycles, Proceedings of the CRM Summer School, 7-19 June, 1998, Banff, Alberta. NATO Science Series, vol. 548. Kluwer Academic Publishers, Berlin (2000) · Zbl 1214.14018
[5] Asakura, M.: On \[d\log\] dlog of elliptic surface minus singular fibers, preprint (2006). arXiv:math/0511190v4 · Zbl 1180.14007
[6] Asakura, M., Saito, S.: Beilinson’s Hodge conjecture with coefficients. In: Nagel, J., Peters, C. (eds.) Algebraic Cycles and Motives. LNS, vol. 344, pp. 3-37. London Mathematical Society, London (2007) · Zbl 1140.14005
[7] Bass, H., Tate, J.: The Milnor ring of a global field. In: Algebraic \[KK\]-theory II. Lecture Notes in Math, vol. 342, pp. 349-446. Springer-Verlag, New York (1972) · Zbl 1132.14007
[8] Beilinson, A.: Notes on absolute Hodge cohomology. In: Applications of Algebraic \[KK\]-Theory to Algebraic Geometry and Number Theory. Contemporary Mathematics 55, part 1, pp. 35-68. AMS, Providence (1986) · Zbl 0621.14011
[9] Beilinson, : Higher regulators and values of \[L\] L-functions. J. Sov. Math. 30, 2036-2070 (1985) · Zbl 0588.14013 · doi:10.1007/BF02105861
[10] Bloch, S., Srinivas, V.: Remarks on correspondences and algebraic cycles. Am. J. Math. 105, 1235-1253 (1983) · Zbl 0525.14003 · doi:10.2307/2374341
[11] Bloch, S.: Algebraic cycles and higher \[KK\]-theory. Adv. Math. 61, 267-304 (1986) · Zbl 0608.14004 · doi:10.1016/0001-8708(86)90081-2
[12] Bloch, S.: Algebraic cycles and the Beilinson conjectures. Contemp. Math. 58(Part I), 65-79 (1986) · Zbl 0605.14017
[13] Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. 7(2), 181-201 (1974) · Zbl 0307.14008
[14] Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Annales scientifiques de l’É.\[N.S. 4^e4\] e série, tome 7(2), 181-201 (1974) · Zbl 0307.14008
[15] Kerr, M., Lewis, J.D., Lopatto, P.: Simplicial Abel-Jacobi maps and reciprocity laws, preprint (2015). arXiv:1502.05459 · Zbl 1395.14005
[16] Burgos, J.: A \[C^{\infty }C\]∞ logarithmic Dolbeault complex. Compositio Math. 92(1), 61-86 (1994) · Zbl 0826.32007
[17] Chen, X., Lewis, J.D.: Noether-Lefschetz for \[K_1\] K1 of a certain class of surfaces. Bol. Soc. Mat. Mexicana (3) 10(1), 29-41 (2004) · Zbl 1059.14012
[18] Chen, X., Lewis, J.D.: Density of rational curves on \[K3\] K3 surfaces. Math. Ann. 356(1), 331-354 (2013) · Zbl 1285.14059 · doi:10.1007/s00208-012-0848-3
[19] Chen, X., Lewis, J.D.: The Hodge \[-{{\cal D}}-\]-D-conjecture for \[K3\] K3 and Abelian surfaces. J. Algebraic Geom. 14(2), 213-240 (2005) · Zbl 1075.14005 · doi:10.1090/S1056-3911-04-00390-X
[20] Chen, X., Lewis, J.D.: Noether-Lefschetz for \[K_1\] K1 of a certain class of surfaces. Bol. Soc. Mat. Mexicana (3) 10(1), 29-41 (2004) · Zbl 1059.14012
[21] Clemens, C.H.: Homological equivalence, modulo algebraic equivalence is not finitely generated. Publ. IHES 58, 19-38 (1983) · Zbl 0529.14002 · doi:10.1007/BF02953771
[22] Clemens, C.H.: Homological equivalence, modulo algebraic equivalence, is not finitely generated. Publ. IHES 58, 19-38 (1983) · Zbl 0529.14002 · doi:10.1007/BF02953771
[23] Collino, A.: Griffiths’ infinitesimal invariant and higher \[KK\]-theory on hyperelliptic jacobians. J. Algebraic Geometry 6, 393-415 (1997) · Zbl 0895.19001
[24] Collino, A.: Indecomposable motivic cohomology classes on quartic surfaces and on cubic fourfolds. Algebraic \[KK\]-Theory and Its Applications (Trieste, 1997), pp. 370-402. World Scientific Publishing, River Edge (1999) · Zbl 0964.14007
[25] Collino, A., Fakhruddin, N.: Indecomposable higher Chow cycles on Jacobians. Math. Z. 240(1), 111-139 (2002) · Zbl 1040.14001 · doi:10.1007/s002090100365
[26] Coombes, K., Srinivas, V.: A remark on \[K_1\] K1 of an algebraic surface. Math. Ann. 265, 335-342 (1983) · Zbl 0507.14016 · doi:10.1007/BF01456022
[27] de Jeu, R., Lewis, J.D (with an appendix by M. Asakura): Beilinson’s Hodge conjecture for smooth varieties. J K-Theory 11(2), 243-282 (2013) · Zbl 1300.14009
[28] de Jeu, R., Lewis, J.D., Patel, D.: A relative version of the Beilinson-Hodge conjecture. In: Kerr, M., Pearlstein, G. (eds.) Recent Advances in Hodge Theory: Period Domains, Algebraic Cycles, and Arithmetic. Cambridge University Press, Cambridge (to appear) · Zbl 1377.14006
[29] Deligne, P.: Théorie de Hodge, II. Inst. Hautes Études Sci. Publ. Math. 40, 5-57 (1971) · Zbl 0219.14007 · doi:10.1007/BF02684692
[30] Deligne, P.: Théorie de Hodge, III. Inst. Hautes Études Sci. Publ. Math. 44, 5-77 (1974) · Zbl 0237.14003 · doi:10.1007/BF02685881
[31] Esnault, H., Paranjape, K.H.: Remarks on absolute de Rham and absolute Hodge cycles. C. R. Acad. Sci. Paris, t 319(Serie I), 67-72 (1994) · Zbl 0833.14013
[32] Esnault, H.; Viehweg, E.; Rapoport, M. (ed.); Schappacher, N. (ed.); Schneider, P. (ed.), Deligne-Beilinson cohomology, No. 4, 43-91 (1988), New York · Zbl 0656.14012
[33] Elbaz-Vincent, P., Müller-Stach, S.: Milnor \[KK\]-theory of rings, higher Chow groups and applications. Invent. Math. 148, 177-206 (2002) · Zbl 1027.19004 · doi:10.1007/s002220100193
[34] Gordon, B.B., Lewis, J.D.: Indecomposable higher Chow cycles. In: The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), vol. 548, pp. 193-224. Nato Science Series C: - Mathematical and Physical Sciences, vol. 548. Kluwer Academic Publication, Dordrecht (2000) · Zbl 0984.14002
[35] Green, M., Griffiths, P.: The regulator map for a general curve. In: Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000), pp. 117-127, Contemporary Mathematics, vol. 312. American Mathematical Society, Providence (2002) · Zbl 1061.14009
[36] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978) · Zbl 0408.14001
[37] Green, M.: Griffiths’ infinitesimal invariant and the Abel-Jacobi map. J. Differ. Geom. 29, 545-555 (1989) · Zbl 0692.14003
[38] Griffiths, P.A.: On the periods of certain rational integrals: I and II. Ann. Math. 90, 460-541 (1969) · Zbl 0215.08103 · doi:10.2307/1970746
[39] Green, M., Griffiths, P., Kerr, M.: Néron models and limits of Abel-Jacobi mappings. Compos. Math. 146(2), 288-366 (2010) · Zbl 1195.14006 · doi:10.1112/S0010437X09004400
[40] Green, M., Müller-Stach, S.: Algebraic cycles on a general complete intersection of high multi-degree of a smooth projective variety. Compos. Math. (3) 100(3), 305-309 (1996) · Zbl 0882.14001
[41] Jannsen, U. Deligne cohomology. In: Rapoport, M., Schappacher, N., Schneider, P. (eds.) Hodge-\[{{\cal D}}\] D-Functions. Perspective Mathematics, vol. 4, pp. 305-372. Academic Press, New York (1988) · Zbl 0564.14020
[42] Jannsen, U.: Motives, Mixed, Algebraic \[KK\]-Theory. Lecture Notes in Math, vol. 1000. Springer-Verlag, Berlin (1990) · Zbl 0691.14001
[43] Jannsen, U.: Equivalence relations on algebraic cycles. In: Gordon, B., Lewis, J., Müller-Stach, S., Saito, S., Yui), N. (eds.) The Arithmetic and Geometry of Algebraic Cycles, Proceedings of the CRM Summer School, 7-19 June, 1998, Banff, Alberta, Canada. NATO Science Series, vol. 548, pp. 225-260. Kluwer Academic Publishers, Berlin (2000) · Zbl 0868.14003
[44] Kahn, B.: Groupe de Brauer et \[(2,1)(2,1)\]-cycles indecomposables. Preprint (2011)
[45] Kato, K.: Milnor \[KK\]-theory and the Chow group of zero cycles. Contemp. Math. I I(55), 241-253 (1986) · Zbl 0603.14009 · doi:10.1090/conm/055.1/862638
[46] Kerr, M., Lewis, J.D., Müller-Stach, S.: The Abel-Jacobi map for higher Chow groups. Compos. Math. 142(2), 374-396 (2006) · Zbl 1123.14006 · doi:10.1112/S0010437X05001867
[47] Kerr, M., Lewis, J.D.: The Abel-Jacobi map for higher Chow groups, II. Invent. Math. 170(2), 355-420 (2007) · Zbl 1139.14010 · doi:10.1007/s00222-007-0066-x
[48] Kerz, M.: The Gersten conjecture for Milnor K-theory. Invent. Math. 175(1), 1-33 (2009) · Zbl 1188.19002 · doi:10.1007/s00222-008-0144-8
[49] King, J.: Log complexes of currents and functorial properties of the Abel-Jacobi map. Duke Math. J. 50(1), 1-53 (1983) · Zbl 0526.32011 · doi:10.1215/S0012-7094-83-05001-9
[50] Kang, S-J., Lewis, J. D.: Beilinson’s Hodge conjecture for \[K_1\] K1 revisited, Cycles, motives and Shimura varieties, 197-215, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2010 · Zbl 1273.14021
[51] Levine, M.: Localization on singular varieties. Invent. Math. 31, 423-464 (1988) · Zbl 0646.14010 · doi:10.1007/BF01388780
[52] Lewis, J.D.: A Survey of the Hodge Conjecture. Appendix B by B. Brent Gordon. CRM Monograph Series, vol. 10, 2nd edn. American Mathematical Society, Providence (1999) · Zbl 0922.14004
[53] Lewis, J.D.: Real regulators on Milnor complexes. \[KK\]-Theory 25(3), 277-298 (2002) · Zbl 1060.14032
[54] Lewis, J.D.: Regulators of Chow cycles on Calabi-Yau varieties. In: Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001). Fields Institute Communications, vol. 38, pp. 87-117. American Mathematical Society, Providence (2003) · Zbl 1057.14017
[55] Lewis, J.D.: Lectures on algebraic cycles. Bol. Soc. Mat. Mexicana (3) 7(2), 137-192 (2001) · Zbl 1092.14013
[56] Lewis, J.D.: A filtration on the Chow groups of a complex projective variety. Compos. Math. 128(3), 299-322 (2001) · Zbl 1052.14015 · doi:10.1023/A:1011882030468
[57] Lewis, J.D.: Abel-Jacobi equivalence and a variant of the Beilinson-Hodge conjecture. J. Math. Sci. Univ. Tokyo 17, 179-199 (2010) · Zbl 1271.14014
[58] Lewis, J.D.: Arithmetic normal functions and filtrations on Chow groups. Proc. Am. Math. Soc. 140(8), 2663-2670 (2012) · Zbl 1285.14008 · doi:10.1090/S0002-9939-2011-11130-4
[59] Lewis, J.D.: A note on indecomposable motivic cohomology classes. J. Reine Angew. Math. 485, 161-172 (1997) · Zbl 0868.14003
[60] Lewis, J. D.: Cycles on varieties over subfields of \[{\mathbb{C}}C\] and cubic equivalence. In: Motives and Algebraic Cycles, pp. 233-247. Fields Institute Communications, vol. 56. American Mathematical Society, Providence (2009) · Zbl 1179.14007
[61] Lewis, J. D.: Hodge type conjectures and the Bloch-Kato theorem. In: Hodge Theory, Complex Geometry, and Representation Theory, pp. 235-258. Contemporary Mathathematics, vol. 608. American Mathematical Society, Providence (2014) · Zbl 1299.14004
[62] Lewis, J. D.: Transcendental methods in the study of algebraic cycles with a special emphasis on Calabi-Yau varieties. In: Arithmetic and Geometry of K3 Surfaces and Calabi-Yau Threefolds. Fields Institute Communications, vol. 67, 29-69, Springer, New York (2013) · Zbl 1302.14002
[63] Lewis, J.D., Saito, S.: Algebraic cycles and Mumford-Griffiths invariants. Am. J. Math. 129(6), 1449-1499 (2007) · Zbl 1132.14007 · doi:10.1353/ajm.2007.0046
[64] Milne, J.: Étale Cohomology. Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton (1980) · Zbl 0433.14012
[65] Müller-Stach, S.: Constructing indecomposable motivic cohomology classes on algebraic surfaces. J. Algebraic Geom. 6, 513-543 (1997) · Zbl 0910.14017
[66] Müller-Stach, S.: Algebraic cycle complexes. In: Saito, S. (ed.) Proceedings of the NATO Advanced Study Institute on the Arithmetic and Geometry of Algebraic Cycles 548, (Lewis, Yui, Gordon, Müller-Stach, pp. 285-305. Kluwer Academic Publishers, Dordrecht (2000) · Zbl 0991.14005
[67] Paranjape, K.: Cohomological and cycle-theoretic connectivity. Ann. of Math. (2) 139(3), 641-660 (1994) · Zbl 0828.14003 · doi:10.2307/2118574
[68] Raynaud, M.: Courbes sur une variété abélienne et points de torsion. Invent. Math. 71, 207-233 (1983) · Zbl 0564.14020 · doi:10.1007/BF01393342
[69] Saito, M.: Direct image of logarithmic complexes and infinitesimal invariants of cycles. In: Algebraic Cycles and Motives, vol. 2, pp. 304-318. London Mathematical Society Lecture Note Series, vol. 344. Cambridge University Press, Cambridge (2007) · Zbl 1125.14007
[70] Saito, M.: Hodge-type conjecture for higher Chow groups. Pure Appl. Math. Quart. 5(3), 947-976 (2009) · Zbl 1180.14007 · doi:10.4310/PAMQ.2009.v5.n3.a3
[71] Saito, S.: Beilinson’s Hodge and Tate conjectures. In: Müller-Stach, S., Peters, C. (eds.) Transcendental Aspects of Algebraic Cycles. LNS, vol. 313, pp. 276-290. London Mathematical Society, London (2004) · Zbl 1069.14008
[72] Steenbrink, J.H.M.: A summary of mixed Hodge theory, Motives (Seattle, WA, 1991), pp. 31-41. In: Proceedings of Symposia in Pure Mathematics, vol. 55, Part 1. American Mathematical Society, Providence (1994) · Zbl 0813.14003
[73] Voisin, C.: The Griffiths group of a general Calabi-Yau threefold is not finitely generated. Duke Math. J. 102(1), 151-186 (2000) · Zbl 0995.14013 · doi:10.1215/S0012-7094-00-10216-5
[74] Weibel, C.: The norm residue isomorphism theorem. Topology 2, 346-372 (2009) · Zbl 1214.14018 · doi:10.1112/jtopol/jtp013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.