×

\(p\)-adic deformation of algebraic cycle classes. (English) Zbl 1301.19005

This paper deals with Fontaine-Messing’s \(p\)-adic variational Hodge conjecture [J.-M. Fontaine and W. Messing, Contemp. Math. 67, 179–207 (1987; Zbl 0632.14016)] which is a \(p\)-adic analogue of Grothendieck’s variational Hodge conjecture in characteristic zero.
Let \(X\) be a smooth projective variety over the Witt ring \(W\) of a perfect field \(k\) of characteristic \(p > 0\) (with field of fractions \(K\)) and let \(\xi_1\) be an element of the Grothendieck group \(K_0(X_1)_{\mathbb Q}\) of the special fibre \(X_1= X \otimes_W k\) such that the preimage of the Chern character element \({\mathrm{ch}}(\xi_1)\) under Berthelot’s crystalline-de Rham comparison isomorphism \(H^{\scriptscriptstyle \bullet}_{\mathrm{dR}}(X/W) \;\; \tilde{\rightarrow} \;\; H^{\scriptscriptstyle \bullet}_{\mathrm{cris}}(X_1/W)\) lies in \(\bigoplus_r \, F^rH^{2r}_{\mathrm{dR}}(X_K/K)\) where \(F^rH^{2r}_{\mathrm{dR}}(X_K/K)\) denotes the \(r^{\mathrm{th}}\) step in the Hodge filtration on the de Rham cohomology \(H^{2r}_{\mathrm{dR}}(X_K/K)\). Then Fontaine-Messing’s conjecture predicts that there exists an element \(\xi \in K_0(X)_{\mathbb Q}\) such that \({\mathrm{ch}}(\xi |_{X_1}) = {\mathrm{ch}}(\xi_1)\) in \(\bigoplus_r \, H^{2r}_{\mathrm{cris}}(X_1/W)_K\). The line-bundle version of this conjecture has been proved by P. Berthelot and A. Ogus [Notes on crystalline cohomology. Princeton, New Jersey: Princeton University Press (1978; Zbl 0383.14010)].
The main result of the paper under review is that there exists a \(\hat{\xi}\) in the projective limit \(({\mathrm{lim}} \, K_0(X_n))_{{\mathbb Q}}\) such that \(\hat{\xi} |_{X_1} = \xi_1\) in \(K_0(X_1)_{\mathbb Q}\) provided we have \(p > {\mathrm{dim}}(X_1) + 6\). This settles (what the authors call) the deformation part of Fontaine-Messing’s conjecture. What’s left to prove Fontaine-Messing’s conjecture is to lift the pro-element \(\hat{\xi} \in ({\mathrm{lim}} \, K_0(X_n))_{\mathbb Q}\) (or a variant of it) to an element \(\xi \in K_0(X)_{\mathbb Q}\). Unlike for Pic, there is unfortunately no general approach to this algebraisation part of Fontaine-Messing’s conjecture available.
For the proof of their main result, the authors create a continuous Chow theory \({\mathrm{CH}}_{\mathrm{cont}}(X_{\scriptscriptstyle \bullet})\) and first prove the analogue of their main result with \({\mathrm{lim}} \, K_0(X_n)\) replaced with \({\mathrm{CH}}_{\mathrm{cont}}(X_{\scriptscriptstyle \bullet})\). To this end, they glue the Suslin-Voevodsky motivic complex on \(X_1\) [A. Suslin and V. Voevodsky, NATO ASI Ser., Ser. C, Math. Phys. Sci. 548, 117–189 (2000; Zbl 1005.19001)] with the Fontaine-Messing-Kato syntomic complex on \(X_{\scriptscriptstyle \bullet}\) [K. Kato, Adv. Stud. Pure Math. 10, 207–251 (1987; Zbl 0645.14009)] to obtain a motivic pro-complex \({\mathbb Z}_{X_{\scriptscriptstyle \bullet}}(r)\) of the \(p\)-adic formal scheme \(X_{\scriptscriptstyle \bullet}\) associated to \(X\) on the Nisnevich site of \(X_1\). They then define \({\mathrm{CH}}^r_{\mathrm{cont}}(X_{\scriptscriptstyle \bullet}) = H^{2r}_{\mathrm{cont}}(X_1, {\mathbb Z}_{X_{\scriptscriptstyle \bullet}}(r))\) and they construct a certain obstruction map and relate it to the Hodge theoretic properties of the cycle class in crystalline cohomology. To finish the proof of their main result, the authors finally construct a Chern character \({\mathrm{ch}}: K_0^{\mathrm{cont}}(X_{\scriptscriptstyle \bullet}) _{\mathbb Q} \rightarrow \bigoplus_{r \leq {\mathrm{dim}}(X_1)} \, {\mathrm{CH}}^r_{\mathrm{cont}}(X_{\scriptscriptstyle \bullet})_{\mathbb Q}\) and, using deep results from topological cyclic homology theory due to T. Geisser and L. Hesselholt [Trans. Am. Math. Soc. 358, No. 1, 131–145 (2006; Zbl 1087.19003); J. Am. Math. Soc. 19, No. 1, 1–36 (2006; Zbl 1087.19002); Ann. Sci. Éc. Norm. Supér. (4) 37, No. 1, 1–43 (2004; Zbl 1062.19003)], they show that \(\mathrm{ch}\) is an isomorphism for \(p > {\mathrm{dim}}(X_1)+6\).
The paper ends with three appendices about homological algebra, homotopical algebra and a crystalline construction of the motivic complex.

MSC:

19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects)
14C25 Algebraic cycles
14D07 Variation of Hodge structures (algebro-geometric aspects)
14D15 Formal methods and deformations in algebraic geometry
14F30 \(p\)-adic cohomology, crystalline cohomology
14F40 de Rham cohomology and algebraic geometry

References:

[1] Artin, M., Grothendieck, A., Verdier, J.-L.: Thórie des topos et cohomologie étale des schémas, 1963-1964. Lecture Notes in Mathematics, vols. 269, 270 and 305 (1972/3) · Zbl 0234.00007
[2] Beilinson, A.; Bernstein, J.; Deligne, P., Faisceaux pervers, Luminy, 1981 · Zbl 0536.14011
[3] Berthelot, P., Ogus, A.: Notes on Crystalline Cohomology. Mathematical Notes. Princeton University Press, Princeton (1978) · Zbl 0383.14010
[4] Berthelot, P., Ogus, A.: F-isocrystals and de Rham cohomology I. Invent. Math. 72(2), 159-199 (1983) · Zbl 0516.14017 · doi:10.1007/BF01389319
[5] Bloch, S.: Semi-regularity and de Rham cohomology. Invent. Math. 17, 51-66 (1972) · Zbl 0254.14011 · doi:10.1007/BF01390023
[6] Bloch, S.: Algebraic cycles and higher K-theory. Adv. Math. 61, 267-304 (1986) · Zbl 0608.14004 · doi:10.1016/0001-8708(86)90081-2
[7] Bloch, S., Kato, K.: p-adic étale cohomology. Publ. Math. IHÉS 63, 1-47 (1986) · Zbl 0613.14017 · doi:10.1007/BF02831624
[8] Bökstedt, M., Hsiang, W., Madsen, I.: The cyclotomic trace and algebraic K-theory of spaces. Invent. Math. 111(3), 465-539 (1993) · Zbl 0804.55004 · doi:10.1007/BF01231296
[9] Bousfield, A., Kan, D.: Homotopy Limits, Completions and Localizations. Lecture Notes in Mathematics, vol. 304. Springer, Berlin (1972). 348 pp. · Zbl 0259.55004 · doi:10.1007/978-3-540-38117-4
[10] Cattani, E., Deligne, P., Kaplan: On the locus of Hodge classes. J. Am. Math. Soc. 8(2), 483-506 (1995) · Zbl 0851.14004 · doi:10.1090/S0894-0347-1995-1273413-2
[11] Colliot-Thélène, J.-L., Sansuc, J.-J., Soulé, C.: Torsion dans le groupe de Chow de codimension deux. Duke Math. J. 50(3), 763-801 (1983) · Zbl 0574.14004 · doi:10.1215/S0012-7094-83-05038-X
[12] Colliot-Thélène, J.-L.; Hoobler, R.; Kahn, B., The Bloch-Ogus-Gabber theorem, Toronto, ON, 1996, Providence · Zbl 0911.14004
[13] Deligne, P.: Théorie de Hodge II. Publ. Math. IHÉS 40, 5-57 (1971) · Zbl 0219.14007 · doi:10.1007/BF02684692
[14] Deligne, P., Relèvement des surfaces K3 en caractéristique nulle, Orsay, 1976-78, Berlin
[15] Deligne, P., Grothendieck, A., Katz, N.: Groupes de monodromie en géométrie algébrique, 1967-1969. Lecture Notes in Mathematics, vols. 288 and 340 (1972/3) · Zbl 1190.14021
[16] Dennis, R.; Stein, M., K2 of radical ideals and semi-local rings revisited, No. 342, 281-303 (1973), Berlin · Zbl 0271.18012
[17] Elbaz-Vincent, P., Müller-Stach, S.: Milnor K-theory of rings, higher Chow groups and applications. Invent. Math. 148(1), 177-206 (2002) · Zbl 1027.19004 · doi:10.1007/s002220100193
[18] Elkik, R.: Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. Éc. Norm. Super. 6, 553-603 (1973) · Zbl 0327.14001
[19] Emerton, M.: A p-adic variational Hodge conjecture and modular forms with complex multiplication. Preprint
[20] Fontaine, J.-M., Messing, W.: p-adic periods and p-adic étale cohomology. Contemp. Math. 87, 179-207 (1987) · Zbl 0632.14016 · doi:10.1090/conm/067/902593
[21] Geisser, T.; Hesselholt, L., Topological cyclic homology of schemes, Seattle, WA, 1997, Providence · Zbl 0953.19001
[22] Geisser, T., Hesselholt, L.: On the K-theory and topological cyclic homology of smooth schemes over a discrete valuation ring. Trans. Am. Math. Soc. 358(1), 131-145 (2006) · Zbl 1087.19003 · doi:10.1090/S0002-9947-04-03599-8
[23] Geisser, T., Hesselholt, L.: The de Rham-Witt complex and p-adic vanishing cycles. J. Am. Math. Soc. 19(1), 1-36 (2006) · Zbl 1087.19002 · doi:10.1090/S0894-0347-05-00505-9
[24] Geisser, T., Hesselholt, L.: On the relative and bi-relative K-theory of rings of finite characteristic. J. Am. Math. Soc. 24, 29-49 (2011) · Zbl 1247.19003 · doi:10.1090/S0894-0347-2010-00682-0
[25] Geisser, T., Levine, M.: The K-theory of fields in characteristic p. Invent. Math. 139(3), 459-493 (2000) · Zbl 0957.19003 · doi:10.1007/s002220050014
[26] Gillet, H.: Riemann-Roch theorems for higher K-theory. Adv. Math. 40, 203-289 (1981) · Zbl 0478.14010 · doi:10.1016/S0001-8708(81)80006-0
[27] Goodwillie, T.: Relative algebraic K-theory and cyclic homology. Ann. Math. 124(2), 347-402 (1986) · Zbl 0627.18004 · doi:10.2307/1971283
[28] Gros, M.: Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique. Mém. Soc. Math. Fr. 21, 1-87 (1985) · Zbl 0615.14011
[29] Gros, M., Kurihara, M.: Régulateurs syntomiques et valeurs de fonctions Lp-adiques I. Invent. Math. 99, 293-320 (1990) · Zbl 0667.14006 · doi:10.1007/BF01234421
[30] Gros, M., Suwa, N.: La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmiques. Duke Math. J. 57(2), 615-628 (1988) · Zbl 0715.14011 · doi:10.1215/S0012-7094-88-05727-4
[31] Grothendieck, A.: On the de Rham cohomology of algebraic varieties. Publ. Math. IHÉS 29, 95-103 (1966) · Zbl 0145.17602 · doi:10.1007/BF02684807
[32] Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique III: Étude cohomologique des faisceaux cohérents (1961-1963) · Zbl 0548.13008
[33] Hesselholt, L., Madsen, I.: On the de Rham-Witt complex in mixed characteristic. Ann. Sci. Éc. Norm. Super. 37(1), 1-43 (2004) · Zbl 1062.19003
[34] Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999) · Zbl 0909.55001
[35] Illusie, L.: Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. Éc. Norm. Super. 12(4), 501-661 (1979) · Zbl 0436.14007
[36] Isaksen, D.: A model structure on the category of pro-simplicial sets. Trans. Am. Math. Soc. 353(7), 2805-2841 (2001) · Zbl 0978.55014 · doi:10.1090/S0002-9947-01-02722-2
[37] Isaksen, D., Strict model structures for pro-categories, Isle of Skye, 2001, Basel · Zbl 1049.18008
[38] Izhboldin, O., On p-torsion in \(K^M_*\) for fields of characteristic p, No. 4, 129-144 (1991), Providence · Zbl 0746.19002
[39] Jannsen, U.: Continuous étale cohomology. Math. Ann. 280(2), 207-245 (1988) · Zbl 0649.14011 · doi:10.1007/BF01456052
[40] Jardine, J.F.: Simplicial presheaves. J. Pure Appl. Algebra 47(1), 35-87 (1987) · Zbl 0624.18007 · doi:10.1016/0022-4049(87)90100-9
[41] Kato, K., Galois cohomology of complete discrete valued fields, Oberwolfach, 1980, Berlin · doi:10.1007/BFb0061904
[42] Kato, K., On p-adic vanishing cycles (application of ideas of Fontaine-Messing), Sendai, 1985, Amsterdam · Zbl 0645.14009
[43] Katz, N.: Nilpotent connections and the monodromy theorem: applications of a result of Turrittin. Publ. Math. IHÉS 39, 175-232 (1970) · Zbl 0221.14007 · doi:10.1007/BF02684688
[44] Kerz, M.: The Gersten conjecture for Milnor K-theory. Invent. Math. 175(1), 1-33 (2009) · Zbl 1188.19002 · doi:10.1007/s00222-008-0144-8
[45] Kerz, M.: Milnor K-theory of local rings with finite residue fields. J. Algebr. Geom. 19(1), 173-191 (2010) · Zbl 1190.14021 · doi:10.1090/S1056-3911-09-00514-1
[46] Kurihara, M.: A note on p-adic étale cohomology. Proc. Jpn. Acad., Ser. A 63, 275-278 (1987) · Zbl 0647.14006 · doi:10.3792/pjaa.63.275
[47] Kurihara, M.: Abelian extensions of an absolutely unramified local field with general residue field. Invent. Math. 93, 451-480 (1988) · Zbl 0666.12012 · doi:10.1007/BF01394341
[48] Kurihara, M.: The exponential homomorphisms for the Milnor K-groups and an explicit reciprocity law. J. Reine Angew. Math. 498, 201-221 (1998) · Zbl 0909.19001
[49] Mazza, C., Voevodsky, V., Weibel, C.: Lecture Notes on Motivic Cohomology. Clay Mathematics Monographs, vol. 2. Am. Math. Soc., Providence (2006) · Zbl 1115.14010
[50] McCarthy, R.: Relative algebraic K-theory and topological cyclic homology. Acta Math. 179, 197-222 (1997) · Zbl 0913.19001 · doi:10.1007/BF02392743
[51] Milne, J.: Values of zeta functions of varieties over finite fields. Am. J. Math. 108, 297-360 (1986) · Zbl 0611.14020 · doi:10.2307/2374676
[52] Milnor, J.: Introduction to Algebraic K-Theory. Annals of Mathematics Studies, vol. 72. Princeton University Press, Princeton (1971) · Zbl 0237.18005
[53] Neeman, A.: Triangulated Categories. Annals of Mathematical Studies, vol. 148. Princeton University Press, Princeton (2001) · Zbl 0974.18008
[54] Pushin, O.: Higher Chern classes and Steenrod operations in motivic cohomology. K-Theory 31(4), 307-321 (2004) · Zbl 1073.14029 · doi:10.1023/B:KTHE.0000031355.85701.d8
[55] Quillen, D.: Homotopical Algebra. Lecture Notes in Mathematics, vol. 43. Springer, Berlin (1967) · Zbl 0168.20903 · doi:10.1007/BFb0097438
[56] Sato, K.: Characteristic classes for p-adic étale Tate twists and the image of p-adic regulators. Preprint (2010) · Zbl 1276.19004
[57] Srinivas, V.: Algebraic K-Theory. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston (2008) · Zbl 1125.19300
[58] Suslin, A.; Voevodsky, V., Bloch-Kato conjecture and motivic cohomology with finite coefficients, No. 548, 117-189 (2002) · Zbl 1005.19001
[59] Thomason, R.; Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories, No. 88, 247-435 (1990) · doi:10.1007/978-0-8176-4576-2_10
[60] van der Kallen, W., Stienstra, J.: The relative K2 of truncated polynomial rings. J. Pure Appl. Algebra 34, 277-289 (1984) · Zbl 0548.13008 · doi:10.1016/0022-4049(84)90041-0
[61] Weibel, C.: An Introduction to Homological Algebra. Cambridge University Press, Cambridge (1994) · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.