×

On the maximality of the triangular subgroup. (Sur la maximalité du sous-groupe triangulaire.) (English. French summary) Zbl 1447.14008

The group \(\text{Aut}(\mathbb A_{\mathbb C}^n)\) of polynomial automorphisms of the affine complex space carries a natural structure of infinite dimensional algebraic group. The authors are interested in maximality properties of the subgroup \(B_n\) of triangular automorphism, which is a closed solvable subgroup. Their main result states that for any \(n \ge 2\), \(B_n\) is maximal among all solvable subgroups of \(\text{Aut}(\mathbb A_{\mathbb C}^n)\). Moreover in the case \(n = 2\), they show that \(B_2\) is maximal among closed subgroups of \(\text{Aut}(\mathbb A_{\mathbb C}^2)\), but is not maximal among all subgroups.

MSC:

14R10 Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
20G99 Linear algebraic groups and related topics

References:

[1] Hyman Bass, “A nontriangular action of \(\mathbb{G}_a\) on \(\mathbb{A}^3\)”, J. Pure Appl. Algebra33 (1984) no. 1, p. 1-5 · Zbl 0555.14019 · doi:10.1016/0022-4049(84)90019-7
[2] Hyman Bass, Edwin H. Connell & David Wright, “The Jacobian conjecture: reduction of degree and formal expansion of the inverse”, Bull. Am. Math. Soc.7 (1982) no. 2, p. 287-330 · Zbl 0539.13012 · doi:10.1090/S0273-0979-1982-15032-7
[3] Arnaud Beauville, Finite subgroups of \(\operatorname{ PGL }_2(K)\), Vector bundles and complex geometry, Contemporary Mathematics 522, American Mathematical Society, 2010, p. 23-29 · Zbl 1218.20030 · doi:10.1090/conm/522/10289
[4] Yuri Berest, Alimjon Eshmatov & Farkhod Eshmatov, “Dixmier groups and Borel subgroups”, Adv. Math.286 (2016), p. 387-429 · Zbl 1400.20048 · doi:10.1016/j.aim.2015.09.012
[5] Éric Edo, “Closed subgroups of the polynomial automorphism group containing the affine subgroup”, to appear in \(Transform. Groups\) · Zbl 1388.13024 · doi:10.1007/s00031-016-9412-7
[6] Éric Edo & Pierre-Marie Poloni, “On the closure of the tame automorphism group of affine three-space”, Int. Math. Res. Not. (2015) no. 19, p. 9736-9750 · Zbl 1338.14057 · doi:10.1093/imrn/rnu237
[7] Arno van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics 190, Birkhäuser, 2000 · Zbl 0962.14037 · doi:10.1007/978-3-0348-8440-2
[8] Shmuel Friedland & John Milnor, “Dynamical properties of plane polynomial automorphisms”, Ergodic Theory Dyn. Syst.9 (1989) no. 1, p. 67-99 · Zbl 0651.58027 · doi:10.1017/S014338570000482X
[9] Jean-Philippe Furter, “On the length of polynomial automorphisms of the affine plane”, Math. Ann.322 (2002) no. 2, p. 401-411 · Zbl 0996.14031 · doi:10.1007/s002080100276
[10] Jean-Philippe Furter & Stéphane Lamy, “Normal subgroup generated by a plane polynomial automorphism”, Transform. Groups15 (2010) no. 3, p. 577-610 · Zbl 1226.14080 · doi:10.1007/s00031-010-9095-4
[11] James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics 21, Springer, 1975 · Zbl 0325.20039
[12] Heinrich W. E. Jung, “Über ganze birationale Transformationen der Ebene”, J. Reine Angew. Math.184 (1942), p. 161-174 · Zbl 0027.08503 · doi:10.1515/crll.1942.184.161
[13] Shulim Kaliman, Isotopic embeddings of affine algebraic varieties into \(\Bbb C^n\), The Madison Symposium on Complex Analysis (Madison, WI, 1991), Contemporary Mathematics 137, American Mathematical Society, 1992, p. 291-295 · Zbl 0768.14005 · doi:10.1090/conm/137/1190990
[14] W. van der Kulk, “On polynomial rings in two variables”, Nieuw Arch. Wiskunde1 (1953), p. 33-41 · Zbl 0050.26002
[15] Stéphane Lamy, “L’alternative de Tits pour \(####\)
[16] A. L. Malʼcev, “On certain classes of infinite solvable groups”, Amer. Math. Soc. Transl.2 (1956), p. 1-21 · Zbl 0070.25404
[17] Mitchael Martelo & Javier Ribón, “Derived length of solvable groups of local diffeomorphisms”, Math. Ann.358 (2014) no. 3-4, p. 701-728 · Zbl 1328.37028 · doi:10.1007/s00208-013-0975-5
[18] Hirosi Nagao, “On \(####\)
[19] Masayoshi Nagata, On automorphism group of \(####\) · Zbl 0306.14001
[20] Mike Frederick Newman, “The soluble length of soluble linear groups”, Math. Z.126 (1972), p. 59-70 · Zbl 0223.20055 · doi:10.1007/BF01580356
[21] Vladimir L. Popov, On actions of \(\mathbb{G}_a\) on \(\mathbb{A}^n\), Algebraic groups (Utrecht, 1986), Lecture Notes in Mathematics 1271, Springer, 1987, p. 237-242 · Zbl 0685.14027 · doi:10.1007/BFb0079241
[22] Vladimir L. Popov, “On infinite dimensional algebraic transformation groups”, Transform. Groups19 (2014) no. 2, p. 549-568 · Zbl 1309.14036 · doi:10.1007/s00031-014-9264-y
[23] Jean-Pierre Serre, Trees, Springer Monographs in Mathematics, Springer, 2003, Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation
[24] Igor R. Shafarevich, “On some infinite-dimensional groups”, Rend. Mat. Appl.25 (1966) no. 1-2, p. 208-212 · Zbl 0149.39003
[25] Igor R. Shafarevich, “On some infinite-dimensional groups. II”, Izv. Akad. Nauk SSSR Ser. Mat.45 (1981) no. 1, p. 214-226, 240 · Zbl 0475.14036
[26] Bertram A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Ergebnisse der Matematik und ihrer Grenzgebiete 76, Springer, 1973 · Zbl 0261.20038
[27] Hans Zassenhaus, “Beweis eines satzes über diskrete gruppen”, Abh. Math. Sem. Univ. Hamburg12 (1937) no. 1, p. 289-312 © Annales de L’Institut Fourier - ISSN (électronique) : 1777-5310 · Zbl 0023.01403 · doi:10.1007/BF02948950
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.