×

On evil Kronecker sequences and lacunary trigonometric products. (Suites méchantes de Kronecker et produits trigonométriques.) (English. French summary) Zbl 1437.11042

Summary: An important result of Weyl states that for every sequence \((n_k)_{k\geq 1}\) of distinct positive integers the sequence of fractional parts of \((n_k \alpha)_{k\geq 1}\) is u.d. \(\mod 1\) for almost all \(\alpha\). However, in this general case it is usually extremely difficult to measure the speed of convergence of the empirical distribution of \((\{n_1 \alpha \}, \cdots, \{n_N \alpha \})\) towards the uniform distribution. In this paper we investigate the case when \((n_k)_{k \geq 1}\) is the sequence of evil numbers, that is the sequence of non-negative integers having an even sum of digits in base 2. We utilize a connection with lacunary trigonometric products \(\prod_{\ell=0}^L \left|\sin \pi 2^\ell\alpha \right|\), and by giving sharp metric estimates for such products we derive sharp metric estimates for exponential sums of \(\left(n_k \alpha\right)_{k \geq 1}\) and for the discrepancy of \(\left(\left\{n_k \alpha \right\} \right)_{k\geq 1}\). Furthermore, we provide some explicit examples of numbers \(\alpha\) for which we can give estimates for the discrepancy of \(\left(\left\{n_k \alpha\right\}\right)_{k\geq 1}\).

MSC:

11B85 Automata sequences
11K38 Irregularities of distribution, discrepancy
11B83 Special sequences and polynomials
11A63 Radix representation; digital problems
68R15 Combinatorics on words
Full Text: DOI

References:

[1] Aistleitner, Christoph, On the law of the iterated logarithm for the discrepancy of lacunary sequences II, Trans. Amer. Math. Soc., 365, 7, 3713-3728 (2013) · Zbl 1282.11093 · doi:10.1090/S0002-9947-2012-05740-0
[2] Aistleitner, Christoph; Berkes, István; Seip, Kristian, GCD sums from Poisson integrals and systems of dilated functions, J. Eur. Math. Soc., 17, 6, 1517-1546 (2015) · Zbl 1344.11053 · doi:10.4171/JEMS/537
[3] Aistleitner, Christoph; Berkes, István; Seip, Kristian; Weber, Michel, Convergence of series of dilated functions and spectral norms of GCD matrices, Acta Arith., 168, 3, 221-246 (2015) · Zbl 1339.42008 · doi:10.4064/aa168-3-2
[4] Allouche, Jean-Paul; Shallit, Jeffrey, Sequences and their applications. Proceedings of the international conference, SETA ’98, Singapore, December 14-17, 1998, The ubiquitous Prouhet-Thue-Morse sequence, 1-16 (1999), London: Springer · Zbl 1005.11005
[5] Allouche, Jean-Paul; Shallit, Jeffrey, Automatic sequences. Theory, applications, generalizations, xvi + 571 p. pp. (2003), Cambridge: Cambridge University Press · Zbl 1086.11015 · doi:10.1017/CBO9780511546563
[6] Baker, Roger C., Metric number theory and the large sieve, J. London Math. Soc., 24, 1, 34-40 (1981) · Zbl 0422.10048 · doi:10.1112/jlms/s2-24.1.34
[7] Beresnevich, Victor; Bernik, Vasily; Dodson, Maurice; Velani, Sanju, Analytic number theory, Classical metric Diophantine approximation revisited, 38-61 (2009), Cambridge Univ. Press, Cambridge · Zbl 1236.11064
[8] Berkes, István; Philipp, Walter, The size of trigonometric and Walsh series and uniform distribution \({\rm mod}\ 1\), J. London Math. Soc., 50, 3, 454-464 (1994) · Zbl 0833.11037 · doi:10.1112/jlms/50.3.454
[9] Bugeaud, Yann, Sur l’approximation rationnelle des nombres de Thue-Morse-Mahler, Ann. Inst. Fourier, 61, 5, 2065-2076 (2011) · Zbl 1271.11074 · doi:10.5802/aif.2666
[10] Catlin, Paul A., Two problems in metric Diophantine approximation. I, J. Number Theory, 8, 3, 282-288 (1976) · Zbl 0337.10038 · doi:10.1016/0022-314X(76)90006-8
[11] Dick, Josef; Pillichshammer, Friedrich, Digital nets and sequences, xviii+600 p. pp. (2010), Cambridge University Press, Cambridge · Zbl 1282.65012 · doi:10.1017/CBO9780511761188
[12] Drmota, Michael; Tichy, Robert F., Sequences, discrepancies and applications, 1651, xiv+503 p. pp. (1997), Springer-Verlag, Berlin · Zbl 0877.11043
[13] Duffin, Richard James; Schaeffer, Albert Charles, Khintchine’s problem in metric Diophantine approximation, Duke Math. J., 8, 243-255 (1941) · Zbl 0025.11002 · doi:10.1215/S0012-7094-41-00818-9
[14] Dyer, Tony; Harman, Glyn, Sums involving common divisors, J. London Math. Soc., 34, 1, 1-11 (1986) · Zbl 0602.10041 · doi:10.1112/jlms/s2-34.1.1
[15] Èminyan, K. M., On the problem of Dirichlet divisors in certain sequences of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat., 55, 3, 680-686 (1991) · Zbl 0737.11023
[16] Erdős, Paul; Gál, István Sándor, On the law of the iterated logarithm. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math., 17, 65-76, 77-84 (1955) · Zbl 0068.05403 · doi:10.1016/S1385-7258(55)50010-2
[17] Fortet, Robert M., Sur une suite egalement répartie, Studia Math., 9, 54-70 (1940) · JFM 66.1298.01
[18] Fouvry, Etienne; Mauduit, Christian, Sommes des chiffres et nombres presque premiers, Math. Ann., 305, 3, 571-599 (1996) · Zbl 0858.11050 · doi:10.1007/BF01444238
[19] Fukuyama, Katusi, Dependence in probability, analysis and number theory, A central limit theorem and a metric discrepancy result for sequences with bounded gaps, 233-246 (2010), Kendrick Press, Heber City, UT · Zbl 1215.60020
[20] Fukuyama, Katusi, A metric discrepancy result for a lacunary sequence with small gaps, Monatsh. Math., 162, 3, 277-288 (2011) · Zbl 1235.60023 · doi:10.1007/s00605-009-0185-0
[21] Gelfond, Alexander Osipovich, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13, 259-265 (1968) · Zbl 0155.09003
[22] Harman, Glyn, Metric number theory, 18, xviii+297 p. pp. (1998), The Clarendon Press, Oxford University Press, New York · Zbl 1081.11057
[23] Hilberdink, Titus, An arithmetical mapping and applications to \(\Omega \)-results for the Riemann zeta function, Acta Arith., 139, 4, 341-367 (2009) · Zbl 1252.11071 · doi:10.4064/aa139-4-3
[24] Hofer, Roswitha; Kritzer, Peter, On hybrid sequences built from Niederreiter-Halton sequences and Kronecker sequences, Bull. Austral. Math. Soc., 84, 2, 238-254 (2011) · Zbl 1234.11096 · doi:10.1017/S0004972711002395
[25] Hofer, Roswitha; Larcher, Gerhard, Metrical Results on the Discrepancy of Halton-Kronecker Sequences, Mathematische Zeitschrift, 271, 1-2, 1-11 (2012) · Zbl 1257.11073 · doi:10.1007/s00209-011-0848-0
[26] Khinchin, Aleksandr Yakovlevich, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92, 115-125 (1924) · JFM 50.0125.01 · doi:10.1007/BF01448437
[27] Kuipers, Lauwerens; Niederreiter, Harald, Uniform distribution of sequences, xiv+390 p. pp. (1974), Wiley-Interscience [John Wiley & Sons], New York-London-Sydney · Zbl 0301.10031
[28] Larcher, Gerhard, Probabilistic Diophantine Approximation and the Distribution of Halton-Kronecker Sequences, J. Complexity, 29, 6, 397-423 (2013) · Zbl 1309.11060 · doi:10.1016/j.jco.2013.05.002
[29] LeVeque, William Judson, On the frequency of small fractional parts in certain real sequences III, J. Reine Angew. Math., 202, 215-220 (1959) · Zbl 0090.26102
[30] Maruyama, Gisiro, On an asymptotic property of a gap sequence, Kōdai Math. Sem. Rep., 2, 31-32 (1950) · Zbl 0045.03402 · doi:10.2996/kmj/1138833879
[31] Matsuyama, Noboru; Takahashi, Shigeru, The law of the iterated logarithms, Sci. Rep. Kanazawa Univ., 7, 35-39 (1961) · Zbl 0200.00056
[32] Mauduit, Christian, Automates finis et équirépartition modulo 1. (Finite automata and uniform distribution modulo 1), C. R. Acad. Sci., Paris, Sér. I, 299, 121-123 (1984) · Zbl 0565.10030
[33] Newman, Donald J.; Slater, Morton, Binary digit distribution over naturally defined sequences, Trans. Am. Math. Soc., 213, 71-78 (1975) · Zbl 0324.10053 · doi:10.2307/1998035
[34] Novak, Erich; Woźniakowski, Henryk, Tractability of multivariate problems. Volume II: Standard information for functionals, 12, xviii+657 p. pp. (2010), European Mathematical Society (EMS), Zürich · Zbl 1241.65025 · doi:10.4171/084
[35] Philipp, Walter, Limit theorems for lacunary series and uniform distribution \({\rm mod}\ 1\), Acta Arith., 26, 3, 241-251 (197475) · Zbl 0263.10020
[36] Raseta, Marko, On lacunary series with random gaps, Acta Math. Hungar., 144, 1, 150-161 (2014) · Zbl 1324.60045 · doi:10.1007/s10474-014-0430-4
[37] Arias de Reyna, Juan, Pointwise convergence of Fourier series, 1785, xviii+175 p. pp. (2002), Springer-Verlag, Berlin · Zbl 1003.42001 · doi:10.1007/b83346
[38] Rivat, Joël; Tenenbaum, Gérald, Constantes d’Erdős-Turán, Ramanujan J., 9, 1-2, 111-121 (2005) · Zbl 1145.11318 · doi:10.1007/s11139-005-0829-1
[39] Shallit, Jeffrey, Simple continued fractions for some irrational numbers, J. Number Theory, 11, 209-217 (1979) · Zbl 0404.10003 · doi:10.1016/0022-314X(79)90040-4
[40] Takahashi, Shigeru, An asymptotic property of a gap sequence, Proc. Japan Acad., 38, 101-104 (1962) · Zbl 0122.31002 · doi:10.3792/pja/1195523464
[41] Zygmund, Antoni Szczepan, Trigonometric series. Vol. I, II, Vol. I: xiv+383p.; Vol. II: iv+364 p. pp. (1988), Cambridge University Press, Cambridge · Zbl 0628.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.