×

Geometry of sets of quantum maps: a generic positive map acting on a high-dimensional system is not completely positive. (English) Zbl 1153.81441

Summary: We investigate the set (a) of positive, trace preserving maps acting on density matrices of size \(N\) and a sequence of its nested subsets: the sets of maps which are (b) decomposable, (c) completely positive, and (d) extended by identity impose positive partial transpose and (e) are superpositive. Working with the Hilbert-Schmidt (Euclidean) measure, we derive tight explicit two-sided bounds for the volumes of all five sets. A sample consequence is the fact that, as \(N\) increases, a generic positive map becomes not decomposable and, a fortiori, not completely positive. Due to the Jamiołkowski isomorphism, the results obtained for quantum maps are closely connected to similar relations between the volume of the set of quantum states and the volumes of its subsets (such as states with positive partial transpose or separable states) or supersets. Our approach depends on the systematic use of duality to derive quantitative estimates and on various tools of classical convexity, high-dimensional probability, and geometry of Banach spaces, some of which are not standard.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81P68 Quantum computation
15B99 Special matrices
47N50 Applications of operator theory in the physical sciences

References:

[1] DOI: 10.1007/BF01883625 · doi:10.1007/BF01883625
[2] DOI: 10.1016/S0375-9601(96)00706-2 · Zbl 1037.81501 · doi:10.1016/S0375-9601(96)00706-2
[3] DOI: 10.1088/0305-4470/30/7/021 · Zbl 0928.46056 · doi:10.1088/0305-4470/30/7/021
[4] DOI: 10.1016/S0393-0440(00)00052-8 · Zbl 1067.81081 · doi:10.1016/S0393-0440(00)00052-8
[5] DOI: 10.1142/S0217751X01005870 · Zbl 1026.81019 · doi:10.1142/S0217751X01005870
[6] DOI: 10.1088/0305-4470/36/39/310 · Zbl 1052.81012 · doi:10.1088/0305-4470/36/39/310
[7] DOI: 10.1088/0305-4470/38/47/011 · Zbl 1085.81017 · doi:10.1088/0305-4470/38/47/011
[8] DOI: 10.1103/PhysRevA.40.4277 · Zbl 1371.81145 · doi:10.1103/PhysRevA.40.4277
[9] Nielsen M. A., Quantum Computation and Quantum Information (2000) · Zbl 1049.81015
[10] DOI: 10.1103/PhysRevA.58.883 · doi:10.1103/PhysRevA.58.883
[11] DOI: 10.1103/PhysRevLett.83.1054 · doi:10.1103/PhysRevLett.83.1054
[12] DOI: 10.1103/PhysRevA.60.3496 · doi:10.1103/PhysRevA.60.3496
[13] DOI: 10.1103/PhysRevA.66.062311 · doi:10.1103/PhysRevA.66.062311
[14] DOI: 10.1103/PhysRevA.72.032304 · doi:10.1103/PhysRevA.72.032304
[15] DOI: 10.1016/j.geomphys.2004.04.011 · Zbl 1065.81032 · doi:10.1016/j.geomphys.2004.04.011
[16] DOI: 10.1103/PhysRevA.73.022109 · doi:10.1103/PhysRevA.73.022109
[17] DOI: 10.1103/PhysRevA.75.062330 · doi:10.1103/PhysRevA.75.062330
[18] DOI: 10.1103/PhysRevLett.80.2261 · doi:10.1103/PhysRevLett.80.2261
[19] DOI: 10.1103/PhysRevA.58.826 · doi:10.1103/PhysRevA.58.826
[20] DOI: 10.1103/PhysRevA.63.032307 · doi:10.1103/PhysRevA.63.032307
[21] DOI: 10.1088/0305-4470/39/5/L02 · Zbl 1085.81035 · doi:10.1088/0305-4470/39/5/L02
[22] DOI: 10.1103/PhysRevA.61.012108 · doi:10.1103/PhysRevA.61.012108
[23] DOI: 10.1016/0034-4877(72)90011-0 · Zbl 0252.47042 · doi:10.1016/0034-4877(72)90011-0
[24] DOI: 10.1023/B:OPSY.0000024753.05661.c2 · Zbl 1052.81011 · doi:10.1023/B:OPSY.0000024753.05661.c2
[25] DOI: 10.1016/S0024-3795(01)00547-X · Zbl 1032.47046 · doi:10.1016/S0024-3795(01)00547-X
[26] DOI: 10.1017/CBO9780511535048 · doi:10.1017/CBO9780511535048
[27] DOI: 10.1016/j.laa.2003.06.005 · Zbl 1041.15021 · doi:10.1016/j.laa.2003.06.005
[28] DOI: 10.1103/PhysRev.121.920 · Zbl 0111.44102 · doi:10.1103/PhysRev.121.920
[29] DOI: 10.1016/0024-3795(75)90075-0 · Zbl 0327.15018 · doi:10.1016/0024-3795(75)90075-0
[30] DOI: 10.1063/1.2738359 · Zbl 1144.81320 · doi:10.1063/1.2738359
[31] DOI: 10.1007/BF02391860 · Zbl 0173.42105 · doi:10.1007/BF02391860
[32] DOI: 10.1007/BF01617922 · Zbl 0342.46055 · doi:10.1007/BF01617922
[33] DOI: 10.1016/0024-3795(75)90058-0 · Zbl 0336.15014 · doi:10.1016/0024-3795(75)90058-0
[34] DOI: 10.1007/978-1-4613-0019-9 · Zbl 1024.52001 · doi:10.1007/978-1-4613-0019-9
[35] Santaló L. A., Port. Math. 8 pp 155– (1949)
[36] DOI: 10.1007/BF01388911 · Zbl 0617.52006 · doi:10.1007/BF01388911
[37] DOI: 10.1007/3-540-44678-8_5 · doi:10.1007/3-540-44678-8_5
[38] DOI: 10.1007/BF01899997 · Zbl 0082.15703 · doi:10.1007/BF01899997
[39] DOI: 10.1017/CBO9780511526282 · doi:10.1017/CBO9780511526282
[40] Milman V. D., Lecture Notes in Mathematics 1200, in: Asymptotic Theory of Finite Dimensional Normed Spaces (1986) · Zbl 0606.46013
[41] DOI: 10.1112/jlms/s1-33.3.270 · Zbl 0083.38402 · doi:10.1112/jlms/s1-33.3.270
[42] DOI: 10.2307/2160081 · Zbl 0779.52011 · doi:10.2307/2160081
[43] DOI: 10.1006/aima.1999.1903 · Zbl 0974.52004 · doi:10.1006/aima.1999.1903
[44] DOI: 10.2307/2035131 · Zbl 0173.24801 · doi:10.2307/2035131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.