×

A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations. (English) Zbl 1372.35167

Summary: The Poisson-Nernst-Planck system of equations used to model ionic transport is interpreted as a gradient flow for the Wasserstein distance and a free energy in the space of probability measures with finite second moment. A variational scheme is then set up and is the starting point of the construction of global weak solutions in a unified framework for the cases of both linear and nonlinear diffusion. The proof of the main results relies on the derivation of additional estimates based on the flow interchange technique developed by D. Matthes et al. [Commun. Partial Differ. Equations 34, No. 11, 1352–1397 (2009; Zbl 1187.35131)].

MSC:

35K65 Degenerate parabolic equations
35K40 Second-order parabolic systems
47J30 Variational methods involving nonlinear operators
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B33 Critical exponents in context of PDEs

Citations:

Zbl 1187.35131

References:

[1] L. Ambrosio and N. Gigli, A user’s guide to optimal transport. In Modelling and optimisation of flows on networks. Vol. 2062 of Lect. Notes Math. Springer, Heidelberg (2013) 1-155.
[2] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. 2nd edition. Birkhäuser Verlag, Basel (2008). · Zbl 1145.35001
[3] A. Arnold, P. Markowich and G. Toscani, On large time asymptotics for drift-diffusion-Poisson systems. Vol. 29 of In Proc. of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998) (2000) 571-581. · Zbl 1017.82041
[4] A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Eq.26 (2001) 43-100. · Zbl 0982.35113 · doi:10.1081/PDE-100002246
[5] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Mongeantorovich mass transfer problem. Numer. Math.84 (2000) 375-393. · Zbl 0968.76069 · doi:10.1007/s002110050002
[6] P. Biler and J. Dolbeault, Long time behavior of solutions of Nernstlanck and Debyeückel drift-diffusion systems. Ann. Henri Poincaré (2000) 461-472. · Zbl 0976.82046
[7] P. Biler, J. Dolbeault and P.A. Markowich, Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling. The Sixteenth International Conference on Transport Theory, Part II (Atlanta, GA 1999). Transport Theory Statist. Phys.30 (2001) 521-536. · Zbl 0988.35134 · doi:10.1081/TT-100105936
[8] A. Blanchet and Ph. Laurençot, The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in R^{d},d 3. Commun. Partial Differ. Eq.38 (2013) 658-686. · Zbl 1282.35202 · doi:10.1080/03605302.2012.757705
[9] A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal.46 (2008) 691-721. · Zbl 1205.65332 · doi:10.1137/070683337
[10] A. Blanchet, J.A. Carrillo, D. Kinderlehrer and M. Kowalczyk, Philippe Laurençot and Stefano Lisini. A hybrid variational principle for the Kelleregel system in R^{2}. Preprint [math.AP] (2014). · Zbl 1334.35086
[11] J.A. Carrillo, R.J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamer.19 (2003) 971-1018. · Zbl 1073.35127 · doi:10.4171/RMI/376
[12] M. Di Francesco and M. Wunsch, Large time behavior in Wasserstein spaces and relative entropy for bipolar drift-diffusion-Poisson models. Monatsh. Math.154 (2008) 39-50. · Zbl 1159.35008 · doi:10.1007/s00605-008-0532-6
[13] W. Fang and K. Ito, On the time-dependent drift-diffusion model for semiconductors. J. Differ. Eq.117 (1995) 245-280. · Zbl 0835.35139 · doi:10.1006/jdeq.1995.1054
[14] H. Gajewski, On the uniqueness of solutions to the drift-diffusion model of semiconductor devices. Math. Models Methods Appl. Sci.4 (1994) 121-133. · Zbl 0801.35133 · doi:10.1142/S021820259400008X
[15] S. Hastings, D. Kinderlehrer and J.B. McLeod, Diffusion mediated transport in multiple state systems. SIAM J. Math. Anal.39 (2007/08) 1208-1230. · Zbl 1157.34039 · doi:10.1137/060650994
[16] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal.29 (1998) 1-17. · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[17] A. Jüngel, A nonlinear drift-diffusion system with electric convection arising in electrophoretic and semiconductor modeling. Math. Nachr.185 (1997) 85-110. · Zbl 1157.35406 · doi:10.1002/mana.3211850108
[18] A. Jüngel, Quasi-hydrodynamic semiconductor equations. Vol. 41 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel (2001). · Zbl 0969.35001
[19] C.E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems. Vol. 83 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1994). · Zbl 0812.35001
[20] D. Kinderlehrer and M. Kowalczyk, The Janossy effect and hybrid variational principles. Discrete Contin. Dyn. Syst. Ser. B11 (2009) 153-176. · Zbl 1154.35369
[21] M. Kurokiba and T. Ogawa, Well-posedness for the drift-diffusion system in L^{p} arising from the semiconductor device simulation. J. Math. Anal. Appl.342 (2008) 1052-1067. · Zbl 1145.35067 · doi:10.1016/j.jmaa.2007.11.017
[22] Ph. Laurençot and B.-V. Matioc, A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Partial Differ. Eq.47 319-341, 2013. · Zbl 1264.35129 · doi:10.1007/s00526-012-0520-5
[23] El.H. Lieb and M. Loss, Analysis. Vol. 14 of Grad. Stud. Math. American Mathematical Society, Providence, RI, 2nd edition (2001).
[24] P.A. Markowich, C.A. Ringhofer and C. Schmeiser, Semiconductor equations. Springer-Verlag, Vienna (1990).
[25] D. Matthes and J. Zinsl, Exponential convergence to equilibrium in a coupled gradient flow system modelling chemotaxis. Preprint [math.AP] (2014). · Zbl 1319.35076
[26] D. Matthes, R.J. McCann and G. Savaré, A family of nonlinear fourth order equations of gradient flow type. Commun. Partial Differ. Equ.34 (2009) 1352-1397. · Zbl 1187.35131 · doi:10.1080/03605300903296256
[27] R.J. McCann, A convexity principle for interacting gases. Adv. Math.128 (1997) 153-179. · Zbl 0901.49012 · doi:10.1006/aima.1997.1634
[28] A. Mielke. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity24 (2011) 1329-1346. · Zbl 1227.35161 · doi:10.1088/0951-7715/24/4/016
[29] Felix Otto. Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Rational Mech. Anal.141 (1998) 63-103. · Zbl 0905.35068 · doi:10.1007/s002050050073
[30] F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Eq.26 (2001) 101-174. · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[31] M. Schmuck, New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials. J. Math. Phys.54 (2013) 021504. · Zbl 1290.35209 · doi:10.1063/1.4790656
[32] J. Simon, Compact sets in the space L^{p}(0,T;B). Ann. Mat. Pura Appl.146 (1987) 65-96. · Zbl 0629.46031 · doi:10.1007/BF01762360
[33] E.M. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series. Princeton University Press, Princeton, N.J. (1970) 30.
[34] J.L. Vázquez. The porous medium equation. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007). Mathematical theory.
[35] C. Villani, Topics in optimal transportation. Vol. 58 of Grad. Stud. MathAmerican Mathematical Society, Providence, RI (2003). · Zbl 1106.90001
[36] Sh. Xu, P. Sheng and Ch. Liu, An energetic variational approach for ion transport. Commun. Math. Sci.12 (2014) 779-789. · Zbl 1319.35199
[37] J. Zinsl, Existence of solutions for a nonlinear system of parabolic equations with gradient flow structure. Monatsh. Math.174 (2014) 653-679. · Zbl 1302.35202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.