×

Large time decay of solutions to Burgers type equations. (English) Zbl 1081.35088

Summary: We study the initial value problem for the nonlinear dissipative equations \[ u_t+(-\Delta)^{\rho/2}u+a\cdot\nabla \bigl( |u|^{\sigma+1}=0,\;(t,x) \in\mathbb{R}^+\times\mathbb{R}^n\quad u(0,x)=u_0 (x),\;x\in\mathbb{R}^n, \] where \(a\in\mathbb{R}^n\), \(\rho>1\), \(\sigma>0\). We prove that if \(a=(-1,0,\dots,0)\) and \[ \int_{\mathbb{R}^n} u_0(x)=0,\quad \int_{\mathbb{R}^n}x_1u_0(x)\,dx>0,\quad \int_{\mathbb{R}^n}x_ju_0(x)\,dx=0\text{ for }j\neq 1, \] then in the case \(\sigma=(\rho-1)/(n+1)\) solutions exist globally and decay as \[ \bigl\| u(t)\bigr\|_{L^\infty}\leq C(1+t)^{-(\rho-1)/\sigma \rho}\bigl(\log(2+t)\bigr)^{-1/\sigma}. \] And in the case \(0<\sigma<(\rho-1)/(n+1)\), \(\sigma\) is close to \((\rho-1)/(n+ 1)\), solutions have estimates \[ \bigl\| u(t)\bigr\|_{L^\infty} \leq C(1+t)^{-((\rho-1)/\sigma\rho)}. \]

MSC:

35Q35 PDEs in connection with fluid mechanics
37L05 General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] DOI: 10.1007/BF00280598 · Zbl 0421.35037 · doi:10.1007/BF00280598
[2] DOI: 10.1006/jdeq.1998.3458 · Zbl 0911.35100 · doi:10.1006/jdeq.1998.3458
[3] DOI: 10.4064/sm148-2-5 · Zbl 0990.35023 · doi:10.4064/sm148-2-5
[4] DOI: 10.1016/S0294-1449(01)00080-4 · Zbl 0991.35009 · doi:10.1016/S0294-1449(01)00080-4
[5] DOI: 10.1016/0022-1236(91)90105-E · Zbl 0762.35011 · doi:10.1016/0022-1236(91)90105-E
[6] Hayashi N, Taiwanese Journal of Mathematics 8 pp 135– (2004)
[7] DOI: 10.1017/S0308210500000561 · Zbl 0970.35139 · doi:10.1017/S0308210500000561
[8] Komatsu T, Osaka Journal of Mathematics 21 pp 113– (1984)
[9] DOI: 10.1081/PDE-120016137 · Zbl 1021.35016 · doi:10.1081/PDE-120016137
[10] DOI: 10.2206/kyushujm.50.1 · Zbl 0883.35088 · doi:10.2206/kyushujm.50.1
[11] Shlesinger MF, Lecture Notes in Physics 450 (1995)
[12] DOI: 10.1080/03605309208820892 · Zbl 0771.35047 · doi:10.1080/03605309208820892
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.