×

Convection-diffusion equations with random initial conditions. (English) Zbl 1412.35371

Summary: We consider an evolution equation generalising the viscous Burgers equation supplemented by an initial condition which is a homogeneous random field. We develop a non-linear framework enabling us to show the existence and regularity of solutions as well as their long time behaviour.

MSC:

35R11 Fractional partial differential equations
35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Adler, R. J.; Taylor, J. E., Random fields and geometry, Springer Monographs in Mathematics, (2007), Springer New York · Zbl 1149.60003
[2] Adler, R. J.; Taylor, J. E.; Worsley, K., Applications of random fields and geometry: foundations and case studies
[3] Albeverio, S.; Molchanov, S. A.; Surgailis, D., Stratified structure of the universe and Burgers’ equation—a probabilistic approach, Probab. Theory Related Fields, 100, 4, 457-484, (1994) · Zbl 0810.60058
[4] Anh, V. V.; Leonenko, N. N., Spectral analysis of fractional kinetic equations with random data, J. Stat. Phys., 104, 5-6, 1349-1387, (2001) · Zbl 1034.82044
[5] Anh, V. V.; Leonenko, N. N., Renormalization and homogenization of fractional diffusion equations with random data, Probab. Theory Related Fields, 124, 3, 381-408, (2002) · Zbl 1031.60043
[6] Bakhtin, Yu. Yu., A functional central limit theorem for transformed solutions of the multidimensional Burgers equation with random initial data, Teor. Veroyatn. Primen., 46, 3, 427-448, (2001) · Zbl 1033.60020
[7] Barrios, B.; Peral, I.; Soria, F.; Valdinoci, E., A Widder’s type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213, 2, 629-650, (2014) · Zbl 1310.35226
[8] Biler, P.; Karch, G.; Woyczyński, W. A., Asymptotics for multifractal conservation laws, Studia Math., 135, 3, 231-252, (1999) · Zbl 0931.35015
[9] Biler, P.; Karch, G.; Woyczyński, W. A., Asymptotics for conservation laws involving Lévy diffusion generators, Studia Math., 148, 2, 171-192, (2001) · Zbl 0990.35023
[10] Biler, P.; Karch, G.; Woyczyński, W. A., Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18, 5, 613-637, (2001) · Zbl 0991.35009
[11] Billingsley, P., Probability and measure, Wiley Series in Probability and Mathematical Statistics, (1995), John Wiley & Sons, Inc. New York, A Wiley-Interscience Publication · Zbl 0822.60002
[12] Caffarelli, L. A.; Sire, Y., On some pointwise inequalities involving nonlocal operators, (Harmonic Analysis, Partial Differential Equations and Applications, Appl. Numer. Harmon. Anal., (2017), Birkhäuser/Springer Cham), 1-18 · Zbl 1482.35017
[13] Droniou, J.; Gallouet, T.; Vovelle, J., Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ., 3, 3, 499-521, (2003), Dedicated to Philippe Bénilan · Zbl 1036.35123
[14] Gel’fand, I. M.; Vilenkin, N. Ya., Generalized functions, vol. 4, applications of harmonic analysis, (1964), Academic Press New York, Translated by Amiel Feinstein · Zbl 0136.11201
[15] Gikhman, I. I.; Skorokhod, A. V., Introduction to the theory of random processes, (1969), Scripta Technica, Inc., W. B. Saunders Co. Philadelphia, Pa., Translated from the Russian by
[16] Ignat, Liviu I.; Stan, Diana, Asymptotic behavior of solutions to fractional diffusion-convection equations, J. Lond. Math. Soc. (2), 97, 2, 258-281, (2018), (English) · Zbl 1387.35051
[17] Ivanov, A. V.; Leonenko, N. N., Statistical analysis of random fields, Mathematics and Its Applications (Soviet Series), vol. 28, (1989), Kluwer Academic Publishers Group Dordrecht, With a preface by A. V. Skorokhod, Translated from the Russian by A. I. Kochubinskiĭ · Zbl 0713.62094
[18] Karch, G.; Woyczyński, W. A., Fractal Hamilton-Jacobi-KPZ equations, Trans. Amer. Math. Soc., 360, 5, 2423-2442, (2008) · Zbl 1136.35012
[19] Krupski, M., Scaling limits of solutions of linear evolution equations with random initial conditions, Stoch. Dyn., 17, 3, (2017) · Zbl 1365.35234
[20] Krylov, N. V., Introduction to the theory of random processes, Graduate Studies in Mathematics, vol. 43, (2002), American Mathematical Society Providence, RI · Zbl 1008.60001
[21] Kwaśnicki, M., Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20, 1, 7-51, (2017) · Zbl 1375.47038
[22] Leonenko, N. N., Limit theorems for random fields with singular spectrum, Mathematics and Its Applications, vol. 465, (1999), Kluwer Academic Publishers Dordrecht · Zbl 0963.60048
[23] Leonenko, N. N.; Woyczyński, W. A., Exact parabolic asymptotics for singular n-D Burgers’ random fields: Gaussian approximation, Stochastic Process. Appl., 76, 2, 141-165, (1998) · Zbl 0928.35214
[24] Liskevich, V. A.; Semenov, Yu. A., Some problems on Markov semigroups, (Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., vol. 11, (1996), Akademie Verlag Berlin), 163-217 · Zbl 0854.47027
[25] Mann, J. A.; Woyczyński, W. A., Growing fractal interfaces in the presence of self-similar hopping surface diffusion, Phys. A, Stat. Mech. Appl., 291, 1-4, 159-183, (2001) · Zbl 0972.82078
[26] Nualart, D., The Malliavin calculus and related topics, Probability and Its Applications (New York), (1995), Springer-Verlag New York · Zbl 0837.60050
[27] Rao, M. M., Random and vector measures, Series on Multivariate Analysis, vol. 9, (2012), World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ · Zbl 1259.46002
[28] Rosenblatt, M., Remarks on the Burgers equation, J. Math. Phys., 9, 1129-1136, (1968) · Zbl 0159.15003
[29] Varopoulos, N. Th.; Saloff-Coste, L.; Coulhon, T., Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, (1992), Cambridge University Press Cambridge · Zbl 0813.22003
[30] Woyczyński, W. A., Burgers-KPZ turbulence, Lecture Notes in Mathematics, vol. 1700, (1998), Springer-Verlag Berlin, Göttingen lectures · Zbl 0919.60004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.