×

On a stochastic nonlinear equation arising from 1D integro-differential scalar conservation laws. (English) Zbl 1105.60043

The authors consider the initial problem for the stochastic nonlinear equation \[ (\partial_t - S)u(t,x)+ \partial_x (q(t,x,u(t,x)))= f(t,x,u(t,x))+ g(t,x,u(t,x))F_{t,x}, \] on the given domain \([0,\infty) \times \mathbb R\) with \(L^2(\mathbb R)\) initial condition, where \(A\) is an integro-differential operator associated with a symmetric, nonlocal, regular Dirichlet form, and \(F_{t,x}\) stands for a Lévy space-time white noise. The initial problem for this equation is interpreted as a jump type stochastic integral equation involving the transition density kernels associated with the symmetric integro-differential operators as the convolution kernels. Then, they prove the existence and uniqueness of a local mild solution to the initial problem for this equation.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Albeverio, S.; Rüdiger, B.; Wu, J.-L., Invariant measures and symmetry property of Lévy type operators, Potential Anal., 13, 147-168 (2000) · Zbl 0978.60096
[2] Antman, S. S., The equations for large vibrations of strings, Amer. Math. Monthly, 87, 359-370 (1980) · Zbl 0435.73056
[3] Bass, R. F.; Levin, D. A., Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc., 354, 2933-2953 (2002) · Zbl 0993.60070
[4] Bertoin, J., The inviscid Burgers equation with Brownian initial velocity, Comm. Math. Phys., 193, 397-406 (1998) · Zbl 0917.60063
[5] Bertoin, J., Structure of shocks in Burgers turbulence with stable noise initial data, Comm. Math. Phys., 203, 729-741 (1999) · Zbl 0943.60055
[6] Biler, P.; Woyczynski, W. A., Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59, 845-869 (1999) · Zbl 0940.35035
[7] Biler, P.; Funaki, T.; Woyczynski, W. A., Fractal Burgers equations, J. Differential Equations, 148, 9-46 (1998) · Zbl 0911.35100
[8] Biler, P.; Funaki, T.; Woyczynski, W. A., Interacting particle approximation for nonlocal quadratic evolution problems, Probab. Math. Statist., 19, 321-340 (1999)
[9] Biler, P.; Karch, G.; Woyczynski, W. A., Asymptotics for multifractal conservation laws, Studia Math., 135, 231-252 (1999) · Zbl 0931.35015
[10] Biler, P.; Karch, G.; Woyczynski, W. A., Multifractal and Lévy conservation laws, C. R. Acad. Sci. Paris, Sér. I Math., 330, 343-348 (2000) · Zbl 0945.35015
[11] Biler, P.; Karch, G.; Woyczynski, W. A., Asymptotics for conservation laws involving Lévy diffusion generators, Studia Math., 148, 171-192 (2001) · Zbl 0990.35023
[12] Biler, P.; Karch, G.; Woyczynski, W. A., Critical nonlinear exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non Lineaire, 18, 613-637 (2001) · Zbl 0991.35009
[13] Chen, Z.-Q.; Kumagai, T., Heat kernel estimates for stable-like processes on \(d\)-sets, Stoch. Process. Appl., 108, 27-62 (2003) · Zbl 1075.60556
[14] Da Prato, G.; Debussche, A.; Temam, R., Stochastic Burgers equation, Nonlinear Differential Equations Appl., 1, 389-402 (1994) · Zbl 0824.35112
[15] Da Prato, G.; Gatarek, D., Stochastic Burgers equation with correlated noise, Stoch. Stoch. Rep., 52, 29-41 (1995) · Zbl 0853.35138
[16] Da Prato, G.; Zabczyk, J., Ergodicity for Infinite Dimensional Systems, London Math. Soc. Lecture Note Ser., vol. 229 (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0849.60052
[17] Ethier, S. N.; Kurtz, T. G., Markov Processes: Characterization and Convergence (1986), Wiley: Wiley New York · Zbl 0592.60049
[18] Fukushima, M.; Oshima, Y.; Takeda, M., Dirichlet Forms and Symmetric Markov Processes, de Gruyter Stud. Math., vol. 19 (1994), de Gruyter: de Gruyter Berlin · Zbl 0838.31001
[19] Giraud, C., On regular points in Burgers turbulence with stable noise initial data, Ann. Inst. H. Poincaré Probab. Statist., 38, 229-251 (2002) · Zbl 0994.35106
[20] Gyöngy, I.; Nualart, D., On the stochastic Burgers equation in the real line, Ann. Probab., 27, 782-802 (1999) · Zbl 0939.60058
[21] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes (1981), North-Holland: North-Holland Kodansha · Zbl 0495.60005
[22] Pseudo-Differential Operators and Markov Processes, vol. II, Generators and Their Potential Theory (2002), Imperial College Press: Imperial College Press London · Zbl 1005.60004
[23] Jacod, J.; Shiryaev, A. N., Limit Theorems for Stochastic Processes (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0830.60025
[24] Kolokoltsov, V., Symmetric stable laws and stable-like jump-diffusions, Proc. London Math. Soc., 80, 725-768 (2000) · Zbl 1021.60011
[25] Komatsu, T., Markov processes associated with certain integro-differential operators, Osaka J. Math., 10, 271-303 (1973) · Zbl 0284.60066
[26] Komatsu, T., Pseudo-differential operators and Markov processes, J. Math. Soc. Japan, 36, 387-418 (1984) · Zbl 0539.60081
[27] Komatsu, T., Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms, Osaka J. Math., 25, 697-728 (1988) · Zbl 0726.35055
[28] Komatsu, T., Uniform estimates for fundamental solutions associated with non-local Dirichlet forms, Osaka J. Math., 32, 833-860 (1995) · Zbl 0867.35123
[29] Lieb, E. H.; Loss, M., Analysis, Grad. Stud. Math., vol. 14 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0966.26002
[30] Majda, A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (1984), Springer-Verlag: Springer-Verlag New York · Zbl 0537.76001
[31] Stroock, D. W., Diffusion processes associated with Lévy generators, Z. Wahr. Geb., 32, 209-244 (1975) · Zbl 0292.60122
[32] Stroock, D. W., Markov Processes from K. Itô’s Perspective, Ann. Math. Stud., vol. 155 (2003), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 1070.60003
[33] Tribe, R.; Zaboronski, O., On the large time asymptotics of decaying Burgers turbulence, Comm. Math. Phys., 212, 415-436 (2000) · Zbl 0974.76037
[34] Truman, A.; Wu, J.-L., Stochastic Burgers equation with Lévy space-time white noise, (Davies, I. M.; etal., Probabilistic Methods in Fluid (2003), World Scientific: World Scientific NJ), 298-323 · Zbl 1066.76021
[35] Truman, A.; Wu, J.-L., Fractal Burgers equation driven by Lévy noise, (Da Prato, G.; Tubaro, L., Stochastic Partial Differential Equations and Applications. Stochastic Partial Differential Equations and Applications, Lecture Notes in Pure and Appl. Math. (2005), Dekker: Dekker New York) · Zbl 1089.60039
[36] Walsh, J. B., An introduction to stochastic partial differential equations, (Ecole d’été de Probabilités de St. Flour XIV. Ecole d’été de Probabilités de St. Flour XIV, Lecture Notes in Math., vol. 1180 (1986), Springer-Verlag: Springer-Verlag Berlin), 266-439 · Zbl 0608.60060
[37] Wehr, J.; Xin, J., White noise perturbation of the viscous shock fronts of the Burgers equation, Comm. Math. Phys., 181, 183-203 (1996) · Zbl 0858.60059
[38] Winkel, M., Burgers turbulence initialized by a regenerative impulse, Stoch. Process. Appl., 93, 241-268 (2001) · Zbl 1099.35522
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.