×

Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model. (English) Zbl 1503.65152

Summary: The aim of this study is to design a singular fractional order pantograph differential model by using the typical form of the Lane-Emden model. The necessary details of the singular-point, fractional order and shape factor of the designed model are also provided. The numerical solutions of the designed model have been presented using the combination of the fractional Meyer wavelet (FMW) neural networks (NNs) modeling and optimization of global search with genetic algorithm (GA) supported with local search of sequential quadratic programming (SQP), i.e., FMWNN-GASQP. The strength of FMWNN is employed to design an objective function using the differential model along with its initial conditions of the singular fractional order pantograph model. The optimization of this objective function is performed using the integrated competence of GA-SQP. The verification, perfection and authentication of the singular fractional order pantograph model using fractional Meyer computing solver is observed for different cases through comparative studies from the available exact solutions which endorsed its robustness, convergence and stability. Moreover, the statistics observation with necessary explanations further authenticate the performance of the FMWNN-GASQP in terms of accuracy and reliability.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
68T07 Artificial neural networks and deep learning
34A08 Fractional ordinary differential equations
Full Text: DOI

References:

[1] Sabir, Z., A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems, Alex Eng J, 60, 2, 2641-2659 (2021)
[2] Yu, F., Integrable coupling system of fractional soliton equation hierarchy, Phys Lett A, 373, 41, 3730-3733 (2009) · Zbl 1233.35172
[3] Momani, S., On a fractional integral equation of periodic functions involving Weyl-Riesz operator in Banach algebras, J Math Anal Appl, 339, 2, 1210-1219 (2008) · Zbl 1136.45010
[4] Diethelm, K., Analysis of fractional differential equations, J Math Anal Appl, 265, 2, 229-248 (2002) · Zbl 1014.34003
[5] Bonilla, B., On systems of linear fractional differential equations with constant coefficients, Appl Math Comput, 187, 1, 68-78 (2007) · Zbl 1121.34006
[6] Diethelm, K., On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, Scientific computing in chemical engineering II, 217-224 (1999), Springer: Springer Berlin, Heidelberg
[7] Shah, K.; Khan, Z. A.; Ali, A.; Amin, R.; Khan, H.; Khan, A., Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative, Alex Eng J, 59, 5, 3221-3231 (2020)
[8] Zhang, Y., A review of applications of fractional calculus in Earth system dynamics, Chaos Solitons Fractals, 102, 29-46 (2017) · Zbl 1374.86028
[9] Daou, R. A.Z., Fractional derivatives for edge detection: application to road obstacles, Smart cities performability, cognition, & security, 115-137 (2020), Springer: Springer Cham
[10] Engheia, N., On the role of fractional calculus in electromagnetic theory, IEEE Antennas Propag Mag, 39, 4, 35-46 (1997)
[11] Aghilí, A., Complete solution for the time fractional diffusion problem with mixed boundary conditions by operational method, Appl Math Nonlinear Sci, 6, 1, 9-20 (2021) · Zbl 1506.35257
[12] Al Ghafri, K. S.; Rezazadeh, H., Solitons and other solutions of (3+ 1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, Appl Math Nonlinear Sci, 4, 2, 289-304 (2019) · Zbl 1506.35258
[13] Matlob, M. A., The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: a primer, Crit Rev TM Biomed Engineering, 47, 4 (2019)
[14] Wilczynski, D. M., Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus, Appl Math Nonlinear Sci, 3, 2, 487-502 (2018) · Zbl 1515.65320
[15] Sabir, Z.; Günerhan, H.; Guirao, J. L.G., On a new model based on third-order nonlinear multisingular functional differential equations, Mathematical Problems in Engineering, 2020 (2020), Article ID 1683961, 9 pages. https://doi.org/10.1155/2020/1683961 · Zbl 07349064
[16] Abdelkawy, M. A., Numerical investigations of a new singular second-order nonlinear coupled functional Lane-Emden model, Open Phys, 18, 1, 770-778 (2020)
[17] Sabir, Z.; Sakar, M. G.; Yeskindirova, M.; Saldir, O., Numerical investigations to design a novel model based on the fifth order system of Emden-Fowler equations, Theor Appl Mech Lett, 10, 5, 333-342 (2020)
[18] Ahamad, I.; Shah, K.; Abdeljawad, T.; Jarad, F., Qualitative study of nonlinear coupled pantograph differential equations of fractional order, Fractals, 28, 08, Article 2040045 pp. (2020) · Zbl 1487.34147
[19] Adel, W., Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model via Bernoulli collocation method, Eur Phys J Plus, 135, 6, 427 (2020)
[20] Sabir, Z., Intelligence computing approach for solving second order system of Emden-Fowler model, J Intell Fuzzy Syst, 1-16 (2020)
[21] Sabir, Z., Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation, Math Comput Simul, 172, 1-14 (2020) · Zbl 1510.68098
[22] Ali, A.; Shah, K.; Abdeljawad, T.; Khan, H.; Khan, A., Study of fractional order pantograph type impulsive antiperiodic boundary value problem, Adv Differ Equ, 2020, 1, 1-32 (2020) · Zbl 1486.34149
[23] Amin, R.; Shah, K.; Asif, M.; Khan, I., A computational algorithm for the numerical solution of fractional order delay differential equations, Appl Math Comput, 402, Article 125863 pp. (2021) · Zbl 1510.65126
[24] Ockendon, J. R.; Tayler, A. B., The dynamics of a current collection system for an electric locomotive, Proc R Soc Lond A Math Phys Sci, 322, 1551, 447-468 (1971)
[25] Wake, G. C.; Cooper, S.; Kim, H. K.; Van-Brunt, B., ‘Functional differential equations for cell-growth models with dispersion, Commun Appl Anal, 4, 4, 561-574 (2000) · Zbl 1084.34545
[26] Sinha, A. S.C., Stabilisation of time-varying infinite delay control systems, IEE proceedings D (control theory and applications), 140, 60-63 (1993), IET Digital Library · Zbl 0769.93057
[27] Bellen, A.; Guglielmi, N.; Torelli, L., Asymptotic stability properties of θ-methods for the pantograph equation, Appl Numer Math, 24, 2-3, 279-293 (1997) · Zbl 0878.65064
[28] Ezz-Eldien, S. S.; Wang, Y.; Abdelkawy, M. A.; Zaky, M. A.; Aldraiweesh, A. A.; Machado, J. T., Chebyshev spectral methods for multi-order fractional neutral pantograph equations, Nonlinear Dyn, 100, 4, 3785-3797 (2020) · Zbl 1516.34016
[29] Anakira, N. R.; Jameel, A.; Alomari, A. K.; Saaban, A.; Almahameed, M.; Hashim, I., Approximate solutions of multi-pantograph type delay differential equations using multistage optimal homotopy asymptotic method, J Math Fundam Sci, 50, 3, 221-232 (2018)
[30] Ezz-Eldien, S. S., On solving systems of multi-pantograph equations via spectral tau method, Appl Math Comput, 321, 63-73 (2018) · Zbl 1426.65114
[31] Isah, A.; Phang, C., A collocation method based on Genocchi operational matrix for solving Emden-Fowler equations, (Journal of Physics: Conference Series, 1489 (2020), IOP Publishing), Article 012022 pp.
[32] YÜZBAŞI, Ş.; Ismailov, N., A Taylor operation method for solutions of generalized pantograph type delay differential equations, Turk J Math, 42, 2, 395-406 (2018) · Zbl 1424.34220
[33] Yousefi, S. A.; Noei-Khorshidi, M.; Lotfi, A., Convergence analysis of least squares-Epsilon-Ritz algorithm for solving a general class of pantograph equations, Kragujev J Math, 42, 3, 431-439 (2018) · Zbl 1488.65205
[34] Amin, R.; Shah, K.; Asif, M.; Khan, I.; Ullah, F., An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet, J Comput Appl Math, 381, Article 113028 pp. (2021) · Zbl 1451.65230
[35] Gul, H.; Alrabaiah, H.; Ali, S.; Shah, K.; Muhammad, S., Computation of solution to fractional order partial reaction diffusion equations, J Adv Res, 25, 31-38 (2020)
[36] Sabir, Z., Solving a novel designed second order nonlinear Lane-Emden delay differential model using the heuristic techniques, Appl Soft Comput, 102, Article 107105 pp. (2021)
[37] Umar, M., A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever, Results Phys, 19, Article 103585 pp. (2020)
[38] Umar, M., Intelligent computing for numerical treatment of nonlinear prey-predator models, Appl Soft Comput, 80, 506-524 (2019)
[39] Sabir, Z., Neuro-swarm intelligent computing to solve the second-order singular functional differential model, Eur Phys J Plus, 135, 6, 1-19 (2020)
[40] Integrated neuro-evolution heuristic with sequential quadratic programming for second-order prediction differential models. Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Hafiz Abdul, Wahab, Muhammad Shoaib, J. F. Gómez Aguilar First published: 01 December 2020 https://doi.org/10.1002/num.22692 · Zbl 1531.65087
[41] Raja, M. A.Z, Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing, Neural Comput Appl, 31, 3, 793-812 (2019)
[42] Sabir, Z., Integrated intelligent computing paradigm for nonlinear multi-singular third-order Emden-Fowler equation, Neural Comput Appl, 33, 8, 3417-3436 (2020)
[43] Umar, M., A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics, Symmetry, 12, 10, 1628 (2020)
[44] Raja, M. A.Z., A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head, Eur Phys J Plus, 133, 9, 364 (2018)
[45] Sabir, Z.; Nisar, K.; Raja, M. A.Z.; Ibrahim, A. A.B. A.; Rodrigues, J. J.; Al-Basyouni, K. S.; Mahmoud, S. R.; Rawat, D. B., Design of Morlet wavelet neural network for solving the higher order singular nonlinear differential equations, Alex Eng J, 60, 6, 5935-5947 (2021)
[46] Sabir, Z.; Raja, M. A.Z.; Khalique, C. M.; Unlu, C., Neuro-evolution computing for nonlinear multi-singular system of third order Emden-Fowler equation, Math Comput Simul, 185, 799-812 (2021) · Zbl 1540.65199
[47] Sabir, Z.; Ali, M. R.; Raja, M. A.Z.; Shoaib, M.; Núñez, R. A.S.; Sadat, R., Computational intelligence approach using Levenberg-Marquardt backpropagation neural networks to solve the fourth-order nonlinear system of Emden-Fowler model, Eng Comput, 1-17 (2021)
[48] Nisar, K.; Sabir, Z.; Raja, M. A.Z.; Ibrahim, A. A.A.; Erdogan, F.; Haque, M. R.; Rodrigues, J. J.; Rawat, D. B., Design of Morlet Wavelet Neural Network for Solving a Class of Singular Pantograph Nonlinear Differential Models, IEEE Access, 9, 77845-77862 (2021)
[49] Umar, M.; Sabir, Z.; Raja, M. A.Z.; Aguilar, J. G.; Amin, F.; Shoaib, M., Neuro-swarm intelligent computing paradigm for nonlinear HIV infection model with CD^4+ T-cells, Math Comput Simul, 188, 241-253 (2021) · Zbl 1540.92242
[50] Umar, M.; Sabir, Z.; Raja, M. A.Z.; Baskonus, H. M.; Yao, S. W.; Ilhan, E., A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells, Results Phys, 25, Article 104235 pp. (2021)
[51] Guerrero-Sánchez, Y.; Umar, M.; Sabir, Z.; Guirao, J. L.; Raja, M. A.Z., Solving a class of biological HIV infection model of latently infected cells using heuristic approach, Discret Contin Dyn Syst S, 14, 10, 3611 (2021) · Zbl 1471.92309
[52] Umar, M.; Sabir, Z.; Raja, M. A.Z.; Amin, F.; Saeed, T.; Guerrero-Sanchez, Y., Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID-19, Alex Eng J, 60, 3, 2811-2824 (2021)
[53] Umar, M.; Sabir, Z.; Zahoor Raja, M. A.; Gupta, M.; Le, D. N.; Aly, A. A.; Guerrero-Sánchez, Y., Computational intelligent paradigms to solve the nonlinear SIR system for spreading infection and treatment using Levenberg-Marquardt backpropagation, Symmetry, 13, 4, 618 (2021)
[54] Ahmad, I.; Ilyas, H.; Urooj, A.; Aslam, M. S.; Shoaib, M.; Raja, M. A.Z., Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels, Neural Comput Appl, 31, 12, 9041-9059 (2019)
[55] Ara, A.; Khan, N. A.; Razzaq, O. A.; Hameed, T.; Raja, M. A.Z., Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling, Adv Differ Equ, 2018, 1, 1-13 (2018) · Zbl 1445.91062
[56] Bukhari, A. H.; Raja, M. A.Z.; Sulaiman, M.; Islam, S.; Shoaib, M.; Kumam, P., Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting, IEEE Access, 8, 71326-71338 (2020)
[57] Mehmood, A.; Zameer, A.; Ling, S. H.; ur Rehman, A.; Raja, M. A.Z., Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming, Neural Comput Appl, 32, 14, 10337-10357 (2020)
[58] Mehmood, A.; Zameer, A.; Aslam, M. S.; Raja, M. A.Z., Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits, Neural Comput Appl, 32, 11, 7121-7137 (2020)
[59] Masood, Z.; Samar, R.; Raja, M. A.Z., Design of fractional order epidemic model for future generation tiny hardware implants, Future Gener Comput Syst, 106, 43-54 (2020)
[60] Chaudhary, N. I.; Latif, R.; Raja, M. A.Z.; Machado, J. T., An innovative fractional order LMS algorithm for power signal parameter estimation, Appl Math Modell, 83, 703-718 (2020) · Zbl 1481.94050
[61] Raja, M. A.Z.; Manzar, M. A.; Shah, S. M.; Chen, Y., Integrated intelligence of fractional neural networks and sequential quadratic programming for Bagley-Torvik systems arising in fluid mechanics, J Comput Nonlinear Dyn, 15, 5, Article 051003 pp. (2020)
[62] Wazwaz, Solving two Emden-Fowler type equations of third order by the variational iteration method, Appl Math Inf Sci, 9, 5, 2429 (2015)
[63] Sabir, Z., Fractional MEYER Neuro-swarm heuristic solver for multi-fractional Order doubly singular model based on Lane-Emden equation (2021), Fractals · Zbl 1481.65104
[64] Sabir, Z., FMNEICS: fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane-Emden system, Comput Appl Math, 39, 4, 1-18 (2020) · Zbl 1476.65157
[65] Reddy, G. T.; Reddy, M. P.K.; Lakshmanna, K.; Rajput, D. S.; Kaluri, R.; Srivastava, G., Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis, Evolut Intell, 13, 2, 185-196 (2020)
[66] Raja, M. A.Z.; Aslam, M. S.; Chaudhary, N. I.; Nawaz, M.; Shah, S. M., Design of hybrid nature-inspired heuristics with application to active noise control systems, Neural Comput Appl, 31, 7, 2563-2591 (2019)
[67] Jiang, Y.; Wu, P.; Zeng, J.; Zhang, Y.; Zhang, Y.; Wang, S., Multi-parameter and multi-objective optimisation of articulated monorail vehicle system dynamics using genetic algorithm, Veh Syst Dyn, 58, 1, 74-91 (2020)
[68] Sabir, Z., Heuristic computing technique for numerical solutions of nonlinear fourth order Emden-Fowler equation, Math Comput Simul, 178, 534-548 (2020) · Zbl 1523.65069
[69] Raja, M. A.Z.; Ahmed, U.; Zameer, A.; Kiani, A. K.; Chaudhary, N. I., Bio-inspired heuristics hybrid with sequential quadratic programming and interior-point methods for reliable treatment of economic load dispatch problem, Neural Comput Appl, 31, 1, 447-475 (2019)
[70] Meyer, M. J.; Szilágyi, A.; Gróf, G., Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm, Appl Energy, 269, Article 115058 pp. (2020)
[71] Zou, D.; Li, S.; Kong, X.; Ouyang, H.; Li, Z., Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy, Appl Energy, 237, 646-670 (2019)
[72] Attaviriyanupap, P.; Kita, H.; Tanaka, E.; Hasegawa, J., A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function, IEEE Trans Power Syst, 17, 2, 411-416 (2002)
[73] Khan, W. U.; Ye, Z.; Chaudhary, N. I.; Raja, M. A.Z., Backtracking search integrated with sequential quadratic programming for nonlinear active noise control systems, Appl Soft Comput, 73, 666-683 (2018)
[74] Victoire, T. A.A.; Jeyakumar, A. E., Hybrid PSO-SQP for economic dispatch with valve-point effect, Electric Power Syst Res, 71, 1, 51-59 (2004)
[75] Alsumait, J. S.; Sykulski, J. K.; Al-Othman, A. K., A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems, Appl Energy, 87, 5, 1773-1781 (2010)
[76] Betts, J. T., Very low-thrust trajectory optimization using a direct SQP method, J Comput Appl Math, 120, 1-2, 27-40 (2000) · Zbl 0970.65072
[77] Chatterjee, A. N.; Ahmad, B., A fractional-order differential equation model of COVID-19 infection of epithelial cells, Chaos Solitons Fractals, 147, Article 110952 pp. (2021) · Zbl 1486.92211
[78] Aghilí, A., Complete solution for the time fractional diffusion problem with mixed boundary conditions by operational method, Appl Math Nonlinear Sci, 6, 1, 9-20 (2021) · Zbl 1506.35257
[79] Şahin, U.; Şahin, T., Forecasting the cumulative number of confirmed cases of COVID-19 in Italy, UK and USA using fractional nonlinear grey Bernoulli model, Chaos Solitons Fractals, 138, Article 109948 pp. (2020)
[80] Mohammad, M.; Trounev, A., On the dynamical modeling of COVID-19 involving Atangana-Baleanu fractional derivative and based on Daubechies framelet simulations, Chaos Solitons Fractals, 140, Article 110171 pp. (2020) · Zbl 1495.92092
[81] Sulaiman, T. A.; Bulut, H.; Baskonus, H. M., On the exact solutions to some system of complex nonlinear models, Appl Math Nonlinear Sci, 6, 1, 29-42 (2021) · Zbl 1506.35214
[82] Amouch, M.; Karim, N., Modeling the dynamic of COVID-19 with different types of transmissions, Chaos Solitons Fractals, Article 111188 pp. (2021) · Zbl 1498.92192
[83] Gençoglu, M. T.; Agarwal, P., Use of quantum differential equations in sonic processes, Appl Math Nonlinear Sci, 6, 1, 21-28 (2021) · Zbl 1524.81025
[84] Baskonus, H. M.; Bulut, H.; Sulaiman, T. A., New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method, Appl Math Nonlinear Sci, 4, 1, 141-150 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.