×

An extension of hard-particle model for three-dimensional non-spherical particles: mathematical formulation and validation. (English) Zbl 1452.76259

Summary: Particle collision model plays an important role in Eulerian-Lagrangian simulation of particle-fluid flows. A new theoretical three-dimensional collision model for generalized non-spherical rigid particles is proposed by using an improved and generalized definition of the coefficient of restitution for general shape particles and following the fundamental laws of momentum, energy and friction. Moreover, the consistence between the present model and the existing hard sphere model under simplified conditions has been demonstrated by reducing the general solution to the special solution for spheres. This model is also validated by a numerical test of collision process between cubic particles using conservation laws and an experiment of collision between a brick particle and a flat surface. The validation work indicates the feasibility of this model to be used for general non-spherical particle-fluid flows. In addition, a particle discharging flow in a lifting hopper is simulated with satisfactory agreement with experimental results, which shows the successful demonstrative application of current model for complex particle flow simulation.

MSC:

76T25 Granular flows
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Tsuji, Y.; Kawaguchi, T.; Tanaka, T., Discrete particle simulation of bubble and slug formulation in a two-dimensional gas-fluidised bed, Powder Technol, 77, 79-87 (1993)
[2] Hoomans, B. P.B.; Kuipers, J. A.M.; Briels, W. J.; van Swaaij, W. P.M., Discrete particle simulation of bubble and slug formulation in a two-dimensional gas-fluidised bed: a hard-sphere approach, Chem. Eng. Sci., 51, 99-118 (1996)
[3] Singh, H.; Arter, R.; Dodd, L.; Langston, P.; Lester, E.; Drury, J., Modelling subgroup behaviour in crowd dynamics DEM simulation, Appl. Math. Model, 33, 4408-4423 (2009) · Zbl 1420.91383
[4] Cleary, P. W.; Sawley, M. L., DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge, Appl. Math. Model, 26, 89-111 (2002) · Zbl 1018.76033
[5] Gui, N.; Xu, W. K.; Ge, L.; Yan, J., LBE-DEM simulation of inter-phase heat transfer in gas-solid cross jets, Chin. Sci. Bull., 59, 2486-2495 (2014)
[6] Bozzi, S.; Passoni, G., Mathematical modelling of bottom evolution by particle deposition and resuspension, Appl. Math. Model, 36, 4186-4196 (2012)
[7] Hilton, J. E.; Cleary, P. W., Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds, Appl. Math. Model, 38, 4197-4214 (2014) · Zbl 1428.76168
[8] Sundaram, S.; Collins, L. R., Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations, J. Fluid Mech., 335, 75-109 (1997) · Zbl 0901.76089
[9] Zhou, H.; Mo, G. Y.; Zhao, J. P.; Cen, K. F., DEM-CFD simulation of the particle dispersion in a gas-solid two-phase flow for a fuel-rich/lean burner, Fuel, 90, 1584-1590 (2011)
[10] Yamamoto, Y.; Potthoff, M.; Tanaka, T.; Kajishima, T.; Tsuji, Y., Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions, J. Fluid Mech., 442, 303-334 (2001) · Zbl 1004.76513
[11] Cate, A. T.; Derksen, J. J.; Portela, L. M.; Van den Akker, H. E.A., Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence, J. Fluid Mech., 519, 233-271 (2004) · Zbl 1065.76194
[12] Darabi, P.; Pougatch, K.; Salcudean, M.; Grecov, D., A novel coalescence model for binary collision of identical wet particles, Chem. Eng. Sci., 64, 1868-1876 (2009)
[13] Florio, L. A., Direct particle motion and interaction modeling method applied to simulate propellant burn, Appl. Math. Model, 37, 5606-5626 (2013)
[14] Hadjidoukasa, P. E.; Angelikopoulosa, P.; Rossinellia, D.; Alexeeva, D.; Papadimitrioub, C.; Koumoutsakosa, P., Bayesian uncertainty quantification and propagation for discrete element simulations of granular materials, Comput. Methods Appl. Mech. Eng., 282, 218-238 (2014) · Zbl 1423.74956
[15] Tao, H.; Jin, B. S.; Zhong, W. Q.; Wang, X. F.; Ren, B.; Zhang, Y.; Xiao, R., Discrete element method modeling of non-spherical granular flow in rectangular hopper, Chem. Eng. Proc., 49, 151-158 (2010)
[16] Langston, P. A.; Al-Awamleh, M. A.; Fraige, F. Y.; Asmar, B. N., Distinct element modelling of non-spherical frictionless particle flow, Chem. Eng. Sci., 59, 425-535 (2004)
[17] Rothenburg, L.; Bathurst, R. J., Numerical simulation of idealised granular assemblies with plane elliptical particles, Comput. Geotech., 11, 315-329 (1991)
[18] Hopkins, M. A.; Hibler, W. D.; Flato, G. M., On the numerical simulation of the sea ice ridging process, J. Geophys. Res, 96, 4809-4820 (1991)
[19] Hilton, J. E.; Mason, L. R.; Cleary, P. W., Dynamics of gas-solid fluidised beds with non-spherical particle geometry, Chem. Eng. Sci., 65, 1584-1596 (2010)
[21] Jensen, R. P.; Bosscher, P. J.; Plesha, M. E.; Edil, T. B., DEM simulation of granular media-structure interface: effects of surface roughness and particle shape, Int. J. Numer. Anal. Meth. Geomech., 23, 531-547 (1999) · Zbl 0939.74078
[22] Höhner, D.; Wirtz, S.; Kruggel-Emden, H.; Scherer, V., Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: Influence on temporal force evolution for multiple contacts, Powder Technol., 208, 643-656 (2011)
[23] Höhner, D.; Wirtz, S.; Scherer, V., A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method, Powder Technol., 253, 256-265 (2014)
[24] Matuttis, H. G.; Luding, S.; Herrmann, H. J., Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles, Powder Technol., 109, 278-292 (2000)
[25] Stafford, D. S.; Jackson, T. L., Using level sets for creating virtual random packs of non-spherical convex shapes, J Comput. Phys., 229, 3295-3315 (2010) · Zbl 1307.80009
[26] Shardt, O.; Derksen, J. J., Direct simulations of dense suspensions of non-spherical particles, Int. J. Multiph. Flow, 47, 25-36 (2012)
[27] Jin, F.; Xin, H.; Zhang, C.; Sun, Q., Probability-based contact algorithm for non-spherical particles in DEM, Powder Technol., 212, 134-144 (2011)
[28] Kondic, L., Dynamics of spherical particles on a surface: Collision-induced sliding and other effects, Phys. Rev. E, 60, 751-770 (1999)
[29] McNamara, S.; Falcon, E., Simulations of vibrated granular medium with impact velocity dependent restitution coefficient, Phys. Rev. E, 71, Article 031302 pp. (2005)
[30] Mitarai, N.; Nakanishi, H., Hard-sphere limit of soft-sphere model for granular materials: Stiffness dependence of steady granular flow, Phys. Rev. E, 67, Article 021301 pp. (2003)
[31] Kosinski, P.; Hoffmann, A. C., Extension of the hard-sphere particle-wall collision model to account for particle deposition, Phys. Rev. E, 79, Article 061302 pp. (2009)
[32] Kosinski, P.; Hoffmann, A. C., An extension of the hard-sphere particle-particle collision model to study agglomeration, Chem. Eng. Sci., 65, 3231-3239 (2010)
[33] Gui, N.; Fan, J. R.; Cen, K. F., Effect of particle-particle collision in decaying homogeneous and isotropic turbulence, Phys. Rev. E, 78, Article 046307 pp. (2008)
[34] Gui, N.; Fan, J. R., Numerical simulation of motion of rigid spherical particles in a rotating tumbler with an inner wavelike surface, Powder Technol., 192, 234-241 (2009)
[35] Crowe, C. T.; Schwarzkopf, J. D.; Sommerfeld, M.; Tsuji, Y., Multiphase Flows with Droplets and Particles (2012), CRC Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.