×

The mesoscopic Eulerian approach for evaporating droplets interacting with turbulent flows. (English) Zbl 1432.76115

Summary: This paper presents a statistical approach, known as mesoscopic Eulerian formalism [P. Février et al., J. Fluid Mech. 533, 1–46 (2005; Zbl 1101.76025)], which is extended in order to model a cloud of inertial evaporating droplets interacting with a turbulent carrier flow. This approach is checked in a non-isothermal droplet-laden turbulent planar jet by means of a priori tests. The “measurement” of the mesoscopic particle-velocity and particle-temperature moments is accomplished by using the Eulerian particle fields computed from a Direct Numerical Simulation (DNS) coupled with a Lagrangian approach for the droplets. The results of this work show the ability of such an approach to describe the evaporating dispersed phase interacting with turbulent flows.

MSC:

76F55 Statistical turbulence modeling
76F65 Direct numerical and large eddy simulation of turbulence
76T10 Liquid-gas two-phase flows, bubbly flows

Citations:

Zbl 1101.76025
Full Text: DOI

References:

[1] Aggarwal, S.K., Peng, F.: A review of droplet dynamics and vaporization modeling for engineering calculations. J. Eng. Gas Turbine Power 117, 453–461 (1995) · doi:10.1115/1.2814117
[2] Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32(9), 1605–1618 (1989) · doi:10.1016/0017-9310(89)90043-4
[3] Armenio, V., Piomelli, U., Fiorotto, V.: Effect of the subgrid scales on particle motion. Phys. Fluids 11, 3030–3042 (1999) · Zbl 1149.76308 · doi:10.1063/1.870162
[4] Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press (1970) · Zbl 0063.00782
[5] Fede, P., Simonin, O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18, 045103/17 (2006)
[6] Février, P., Simonin, O., Squires, K.D.: Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533, 1–46 (2005) · Zbl 1101.76025
[7] Gatignol, R.: The faxen formulae for a rigid particle in an unsteady non uniform stokes flow. J. Mec. Theor. Appl. 1, 143–160 (1983) · Zbl 0544.76032
[8] Kaufmann, A., Moreau, M., Simonin, O., Helie, J.: Comparison between Lagrangian and mesoscopic Eulerian modelling approaches for inertial particles suspended in decaying isotropic turbulence. J. Comput. Phys. 227(13), 6448–6472 (2008) · Zbl 1338.76035 · doi:10.1016/j.jcp.2008.03.004
[9] Mashayek, F.: Droplet-turbulence interactions in low-Mach-number homogeneous shear two-phase flows. J. Fluid Mech. 367, 163–203 (1998) · Zbl 0924.76108 · doi:10.1017/S0022112098001414
[10] Masi, E., Bédat, B., Moreau, M., Simonin, O.: Euler–Euler large-eddy simulation approach for non isothermal particle-laden turbulent jet. In: In 8th Int. Sym. on Numerical Methods for Multiphase Flow, ASME-FEDSM, vol. 55143 (2008)
[11] Masi, E., Riber, E., Sierra, P., Simonin, O., Gicquel, L.Y.M.: Modeling of the random uncorrelated velocity stress tensor for unsteady particle eulerian simulation in turbulent flows. In: Proc. 7th Int. Conf. on Multiphase Flow, 30 May–4 June. Tampa, FL (2010)
[12] Masi, E.: Theoretical and numerical study of the modeling of unsteady non-isothermal particle-laden turbulent flows by an Eulerian–Eulerian approach. Ph.D. thesis, Institut National Polytechnique de Toulouse (2010). http://ethesis.inp-toulouse.fr/archive/00001256/01/masi.pdf
[13] Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983) · Zbl 0538.76031 · doi:10.1063/1.864230
[14] Miller, R.S., Harstad, K., Bellan, J.: Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. Int. J. Multiph. Flow 24(6), 1025–1055 (1998) · Zbl 1121.76460 · doi:10.1016/S0301-9322(98)00028-7
[15] Moreau, M., Simonin, O., Bédat, B.: Development of gas-particle Euler–Euler LES approach: a priori analysis of particle subgrid models in homogeneous isotropic turbulence. Flow Turbul. Combust. 84(2), 295–324 (2010) · Zbl 1423.76162 · doi:10.1007/s10494-009-9233-z
[16] Mossa, J.-B.: Polydisperse extension for Euler–Euler description of reactive two-phase flows. Ph.D. thesis, Institut National Polytechnique de Toulouse (2005). http://ethesis.inp-toulouse.fr/archive/00000307/01/mossa.pdf
[17] Passot, T., Pouquet, A.: Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441–446 (1987) · Zbl 0633.76054 · doi:10.1017/S0022112087002167
[18] Prevost, F., Boree, J., Nuglisch, H.J., Charnay, G.: Measurements of fluid/particle correlated motion in the far field of an axisymmetric jet. Int. J. Multiph. Flow 22(4), 685–701 (1996) · Zbl 1135.76522 · doi:10.1016/0301-9322(96)00009-2
[19] Ranz, W.E., Marshall, W.R.: Evaporation from drops: II. Chem. Eng. Prog. 48, 173–180 (1952)
[20] Riber, E.: Modeling turbulent two-phase flows using large-eddy simulation. Ph.D. thesis, Institut National Polytechnique de Toulouse (2007). http://ethesis.inp-toulouse.fr/archive/00000531/02/riber1.pdf
[21] Riber, E., Moreau, V., Garcia, M., Poinsot, T., Simonin, O.: Evaluation of numerical strategies for large eddy simulation of particulate two-phase recirculating flows. J. Comput. Phys. 228, 539–564 (2009) · Zbl 1409.76046 · doi:10.1016/j.jcp.2008.10.001
[22] Reeks, M.W.: On a kinetic equation for the transport of particles in turbulent flows. Phys. Fluids 3(3), 446–456 (1991) · Zbl 0719.76068 · doi:10.1063/1.858101
[23] Salvetti, M.V., Banerjee, S.: A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations. Phys. Fluids 7(11), 2831–2847 (1994) · Zbl 1026.76541 · doi:10.1063/1.868779
[24] Schiller, L., Nauman, A.: A drag coefficient correlation. V.D.I. Zeitung 77, 318–320 (1935)
[25] Simonin, O.: Prediction of the dispersed phase turbulence in particle-laden jet. In: Proc. 4th Int. Symp. on Gas-Solid Lows, ASME-FED, vol. 121, pp 197–206 (1991)
[26] Simonin, O., Flour, I.: An Eulerian approach for turbulent reactive two-phase flows loaded with discrete particles. In: In Proc. 6th Workshop on Two-Phase Flow Prediction, Erlangen, vol. 14, pp. 61–62 (1992)
[27] Simonin, O.: Statistical and continuum modelling of turbulent reactive particulate flows: part I. In: In Lecture Series 2000–06, VKI for Fluid Dynamics (2000)
[28] Simonin, O., Février, P., Laviéville, J.: On the spatial distribution of heavy particle velocities in turbulent flow: from continuous field to particulate chaos. J. Turbul. 3, 040 1–18 (2002) · Zbl 1082.76549
[29] Sirignano, W.A.: Fluid dynamics of sprays. J. Fluids Eng. 115, 345–378 (1993) · doi:10.1115/1.2910148
[30] Wang, L.P., Stock, D.E.: Dispersion of heavy particles by turbulent motion. J. Atmos. Sci. 50, 1897–1913 (1993) · doi:10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2
[31] Wang, Q., Squires, K.D.: Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids 8(5), 1207–1223 (1996) · Zbl 1086.76032 · doi:10.1063/1.868911
[32] Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T., Tsuji, Y.: Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303–334 (2001) · Zbl 1004.76513
[33] Yuen, M.C., Chen, L.W.: On drag of evaporating liquid droplets. Combust. Sci. Technol. 14, 147–154 (1976) · doi:10.1080/00102207608547524
[34] Zaichik, L.I.: A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids 11(6), 1521–1534 (1999) · Zbl 1147.76544 · doi:10.1063/1.870015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.