×

The relative Picard functor on schemes over a symmetric monoidal category. (English) Zbl 1222.14095

Let \(({\mathbf C},\otimes,1)\) be an abelian, closed symmetric monoidal category containing all small limits and colimits. Denote by \(\text{Comm}({\mathbf C})\) the category of commutative monoid objects in \({\mathbf C}\). Since \({\mathbf C}\) is a closed monoidal category, any commutative monoid \(A\in\text{Comm}({\mathbf C})\) defines another closed symmetric monoidal category \((A\text{-Mod},\otimes_A, A)\), namely the category of \(A\)-modules. Then \(\text{Aff}_{{\mathbf C}}:= \text{Comm}({\mathbf C})^{op}\) is called the category of affine schemes over \({\mathbf C}\). If \(A\) is an object of \(\text{Comm}({\mathbf C})\), then the corresponding object in \(\text{Aff}_{{\mathbf C}}\) will be denoted by \(\text{Spec}(A)\). This kind of generalized algebraic geometry (over an abelian, closed symmetric monoidal category) has been studied widely in the past, mainly in the context of ringed toposes, Grothendieck sites, and Tannaka categories.
Very recently, B. Toën and M. Vaquié [J. K-Theory 3, No. 3, 437–500 (2009; Zbl 1177.14022)] have introduced the notion of Zariski coverings in the category \(\text{Aff}_{{\mathbf C}}\), thereby determining a Grothendieck site such that the representable presheaves on \(\text{Aff}_{{\mathbf C}}\) are in fact sheaves. Furthermore, these authors defined the concept of a scheme over \({\mathbf C}\) essentially by using sheaves of sets on \(\text{Aff}_{{\mathbf C}}\) and suitable Zariski coverings of them. A scheme \(X\) over \({\mathbf C}\) comes equipped with a functorially defined structure sheaf \({\mathcal O}_X\), with values taken in \(\text{Comm}({\mathbf C})\).
In the paper under review, the author extends this approach by Toën and Vaquié by establishing the notion of relative Picard functor on the category of schemes over \({\mathbf C}\). To this end, quasi-coherent \({\mathcal O}_X\)-modules on a scheme \((X,{\mathcal O}_X)\) over \({\mathbf C}\) are suitably defined, and their basic functorial properties for a particular class of schemes, the so-called bicomplete schemes, are described in full detail. Then, for certain morphisms \(h: (X,{\mathcal O}_X)\to (S,{\mathcal O}_S)\) of bicomplete schemes over \({\mathbf C}\), a relative Picard functor \(\text{Pic}_{X/S}: (\text{Sch}_{{\mathbf C}}/S)^{op}\to Ab\) together with its associated sheaf \(\text{Pic}_{X/S}\) on \(\text{Sch}_{{\mathbf C}}/S\) is defined and analyzed, where \(\text{Sch}_{{\mathbf C}}/S\) stands for the subcategory of bicomplete schemes over a bicomplete base scheme \((S,{\mathcal O}_S)\). The author’s main result, in this context, is a theorem (Theorem 1.1.) stating the following:
(a) The relative Picard functor \(\text{Pic}_{X/S}\) defines a separated presheaf on \(\text{Sch}_{{\mathbf C}}/S\).
(b) Under the additional assumption that the structure morphism \(h: (X,{\mathcal O}_X)\to (S,{\mathcal O}_S)\) has a section \(g: (S,{\mathcal O}_S)\to(X,{\mathcal O}_X)\), the relative Picard functor \(\text{Pic}_{X/S}\) defines a sheaf on \(\text{Sch}_{{\mathbf C}}/S\).
This result generalizes a classical theorem on the relative Picard functor in the usual algebraic geometry of schemes over a fixed commutative ring. A lucid discussion of that classical theorem can be found in S. Kleiman’s masterly essay “The Picard Scheme” [in: Fundamental algebraic geometry: Grothendieck’s FGA explained. Mathematical Surveys and Monographs 123. Providence, RI: American Mathematical Society (AMS) (2005; Zbl 1085.14001)], where it appears as Theorem 9.2.5. in Section 2.
As the author points out, there is some recent similar work on the relative Picard functor on algebraic stacks by S. Brochard [Math. Ann. 343, No. 3, 541–602 (2009; Zbl 1165.14023)].

MSC:

14K30 Picard schemes, higher Jacobians
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
14A20 Generalizations (algebraic spaces, stacks)
14C22 Picard groups
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
Full Text: DOI

References:

[1] Brochard, S., Foncteur de Picard dʼun champ algébrique, Math. Ann., 343, 3, 541-602 (2009) · Zbl 1165.14023
[2] Deligne, P.; Milne, J. S., Tannakian Categories, Springer Lecture Notes in Mathematics, vol. 900 (1982), pp. 101-228 · Zbl 0477.14004
[3] Deligne, P., Catégories tannakiennes, (The Grothendieck Festschrift, vol. II. The Grothendieck Festschrift, vol. II, Progr. Math., vol. 87 (1990), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 111-195 · Zbl 0727.14010
[4] Dold, A.; Puppe, D., Duality, trace, and transfer, (Proceedings of the International Conference on Geometric Topology. Proceedings of the International Conference on Geometric Topology, Warsaw, 1978 (1980), PWN: PWN Warsaw), 81-102 · Zbl 0556.55006
[5] Fausk, H.; Lewis, L. G.; May, J. P., The Picard group of equivariant stable homotopy theory, Adv. Math., 163, 1, 17-33 (2001) · Zbl 1009.55006
[6] Hakim, M., Topos annelés et schémas relatifs, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 64 (1972), Springer-Verlag: Springer-Verlag Berlin, New York · Zbl 0246.14004
[7] Hartshorne, Robin, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52 (1977), Springer-Verlag: Springer-Verlag New York, Heidelberg · Zbl 0367.14001
[8] Hovey, M., Chromatic phenomena in the algebra of \(B P_\ast B P\)-comodules, (Elliptic Cohomology. Elliptic Cohomology, London Math. Soc. Lecture Note Ser., vol. 342 (2007), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 170-203 · Zbl 1236.55019
[9] Hovey, M.; Palmieri, J. H.; Strickland, N. P., Axiomatic stable homotopy theory, Mem. Amer. Math. Soc., 128, 610 (1997) · Zbl 0881.55001
[10] Kleiman, S. L., The Picard scheme, (Fundamental Algebraic Geometry. Fundamental Algebraic Geometry, Math. Surveys Monogr., vol. 123 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 235-321
[11] Lewis, L. G.; May, J. P.; Steinberger, M., Equivariant Stable Homotopy Theory, Lecture Notes in Mathematics, vol. 1213 (1986), Springer-Verlag: Springer-Verlag Berlin, With contributions by J.E. McClure · Zbl 0611.55001
[12] May, J. P., Picard groups, Grothendieck rings, and Burnside rings of categories, Adv. Math., 163, 1, 1-16 (2001) · Zbl 0994.18004
[13] Toën, B.; Vaquié, Bertrand M., Au-dessous de \(Spec(Z)\), J. K-Theory, 3, 3, 437-500 (2009) · Zbl 1177.14022
[14] Vitale, E. M., The Brauer and Brauer-Taylor groups of a symmetric monoidal category, Cahiers Topologie Géom. Différentielle Catég., 37, 2, 91-122 (1996) · Zbl 0856.18007
[15] Vitale, E. M., Monoidal categories for Morita theory, Cahiers Topologie Géom. Différentielle Catég., 33, 4, 331-343 (1992) · Zbl 0767.18009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.