×

Picard groups of derived categories. (English) Zbl 1023.18011

In [A. Zimmermann, CMS Conf. Proc. 18, 721-749 (1996; Zbl 0855.16015)] and R. Rouquier and A. Zimmermann [“Picard groups for derived module categories”, Proc. Lond. Math. Soc. 87, 197-225 (2003; Zbl 1058.18007)] Rouquier and the reviewer and independently A. Yekutieli [J. Lond. Math. Soc., II. Ser. 60, 723-746 (1999; Zbl 0954.16006)] defined the group of standard self-equivalences of the derived category of an algebra. One of the statements proved in these papers in varying generality was the fact that for a commutative indecomposable ring \(R\) any self-equivalence of the derived category of bounded complexes of \(R\)-modules is given by a composition of a shift in degree and a Morita self-equivalence. The author proves in the paper under review basically the same kind of statement replacing a commutative ring by a commutative unital ringed Grothendieck topos with enough points. The method of proof is similar to the one in [Rouquier and Zimmermann, loc. cit.], though, since the setting is much more general, many technical difficulties are considerably harder in the paper under review.

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
18E30 Derived categories, triangulated categories (MSC2010)
14C22 Picard groups
14F20 Étale and other Grothendieck topologies and (co)homologies
16D90 Module categories in associative algebras
Full Text: DOI

References:

[1] Cartan, H.; Eilenberg, S., Homological Algebra (1956), Princeton University Press: Princeton University Press Princeton · Zbl 0075.24305
[2] Fausk, H.; Lewis, L. G.; May, J. P., The Picard group of the equivariant stable homotopy category, Adv. Math., 163, 17-33 (2001) · Zbl 1009.55006
[3] A. Grothendieck, Sur quelques points d’algebre homologique, Tohoku Mathe. J. (2) 9 (1957) (Chapitre V).; A. Grothendieck, Sur quelques points d’algebre homologique, Tohoku Mathe. J. (2) 9 (1957) (Chapitre V). · Zbl 0118.26104
[4] A. Grothendieck, J.L. Verdier, Topos, Expose IV, in: SGA 4, Lecture Notes in Mathematics, Vol. 269, Springer, Berlin, 1971.; A. Grothendieck, J.L. Verdier, Topos, Expose IV, in: SGA 4, Lecture Notes in Mathematics, Vol. 269, Springer, Berlin, 1971.
[5] Hartshorne, R., Residues and Duality, Lecture Notes in Mathematics, Vol. 20 (1966), Springer: Springer Berlin · Zbl 0212.26101
[6] Hopkins, M. J.; Mahowald, M. E.; Sadofsky, H., Construction of elements in Picard groups, (Friedlander, E. M.; Mahowald, M. E., Topology and Representation Theory. Topology and Representation Theory, Contemporary Mathematics, Vol. 158 (1994), American Mathematical Society: American Mathematical Society Providence, RI), 89-126 · Zbl 0799.55005
[7] Hovey, M.; Sadofsky, H., Invertible spectra in the \(E(n)\)-local stable homotopy category, J. London Math. Soc., 60, 284-302 (1999) · Zbl 0947.55013
[8] P. Hu, On the Picard group of the \(A^1\); P. Hu, On the Picard group of the \(A^1\)
[9] Matsumura, H., Commutative ring theory, Cambridge Stud. Adv. Math., 8 (1994)
[10] May, J. P., Picard groups, Grothendieck rings, and Burnside rings of categories, Adv. Math., 163, 1-16 (2001) · Zbl 0994.18004
[11] Miyachi, J.-I.; Yekutieli, A., Derived Picard groups of finite dimensional hereditary algebras, Compositio Math., 129, 341-368 (2001) · Zbl 0999.16012
[12] R. Rouquier, A. Zimmermann, Picard groups for derived module categories, 1999, preprint.; R. Rouquier, A. Zimmermann, Picard groups for derived module categories, 1999, preprint. · Zbl 1058.18007
[13] Spaltenstein, N., Resolution of unbounded complexes, Compositio Math., 65, 121-154 (1988) · Zbl 0636.18006
[14] Yekutieli, A., Dualizing complexes, Morita equivalence, and the derived Picard group of a ring, J. London Math. Soc., 60, 723-746 (1999) · Zbl 0954.16006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.