×

On univoque Pisot numbers. (English) Zbl 1182.11051

A real number \(\beta>1\) is said to be univoque if there is a unique sequence of integers \(s_1, s_2, s_3, \dots \in [0, \beta)\) such that \(1=\sum_{n \geq 1} s_n \beta^{-n}\). In this paper the authors study univoque Pisot numbers. In their main result they determine the smallest univoque Pisot number \(\beta=1.880000\dots\) which is the root of the polynomial \(x^{14}-2x^{13}+x^{11}-x^{10}-x^7+x^6-x^4+x^3-x+1.\) Its univoque expansion is \(111001011(1001010)^{\infty}\). The proofs are mainly computational. In particular, they use Boyd’s algorithm for finding Pisot numbers in an interval. It is also shown that the smallest limit point of the set of univoque Pisot numbers is the root \(\lambda = 1.905166\dots\) of \(x^4-x^3-2x^2+1\) which is itself a univoque Pisot number.

MSC:

11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11A67 Other number representations

References:

[1] J.-P. Allouche, Théorie des Nombres et Automates, Thèse d’État, Bordeaux, 1983.
[2] Jean-Paul Allouche, Itérations de fonctions unimodales et suites engendrées par automates, Seminar on Harmonic Analysis, 1981 – 1982, Publ. Math. Orsay 83, vol. 2, Univ. Paris XI, Orsay, 1983, pp. 1 – 6 (French). Jean-Paul Allouche and Michel Cosnard, Itérations de fonctions unimodales et suites engendrées par automates, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 3, 159 – 162 (French, with English summary).
[3] Jean-Paul Allouche and Michel Cosnard, The Komornik-Loreti constant is transcendental, Amer. Math. Monthly 107 (2000), no. 5, 448 – 449. · Zbl 0997.11052 · doi:10.2307/2695302
[4] J.-P. Allouche and M. Cosnard, Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set, Acta Math. Hungar. 91 (2001), no. 4, 325 – 332. · Zbl 1012.11007 · doi:10.1023/A:1010667918943
[5] Jean-Paul Allouche and Jeffrey Shallit, The ubiquitous Prouhet-Thue-Morse sequence, Sequences and their applications (Singapore, 1998) Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 1999, pp. 1 – 16. · Zbl 1005.11005
[6] Mohamed Amara, Ensembles fermés de nombres algébriques, Ann. Sci. École Norm. Sup. (3) 83 (1966), 215 – 270 (1967) (French). · Zbl 0219.12004
[7] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.-P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992. With a preface by David W. Boyd. · Zbl 0772.11041
[8] Anne Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 6, A419 – A421 (French, with English summary). · Zbl 0362.10040
[9] Peter Borwein, Computational excursions in analysis and number theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 10, Springer-Verlag, New York, 2002. · Zbl 1020.12001
[10] David W. Boyd, Pisot and Salem numbers in intervals of the real line, Math. Comp. 32 (1978), no. 144, 1244 – 1260. · Zbl 0395.12004
[11] David W. Boyd, Pisot numbers in the neighbourhood of a limit point. I, J. Number Theory 21 (1985), no. 1, 17 – 43. , https://doi.org/10.1016/0022-314X(85)90010-1 David W. Boyd, Pisot numbers in the neighborhood of a limit point. II, Math. Comp. 43 (1984), no. 168, 593 – 602. · Zbl 0575.12001
[12] David W. Boyd, Pisot numbers in the neighbourhood of a limit point. I, J. Number Theory 21 (1985), no. 1, 17 – 43. , https://doi.org/10.1016/0022-314X(85)90010-1 David W. Boyd, Pisot numbers in the neighborhood of a limit point. II, Math. Comp. 43 (1984), no. 168, 593 – 602. · Zbl 0575.12001
[13] David W. Boyd, Salem numbers of degree four have periodic expansions, Théorie des nombres (Quebec, PQ, 1987) de Gruyter, Berlin, 1989, pp. 57 – 64.
[14] David W. Boyd, On beta expansions for Pisot numbers, Math. Comp. 65 (1996), no. 214, 841 – 860. · Zbl 0855.11039
[15] David W. Boyd, On the beta expansion for Salem numbers of degree 6, Math. Comp. 65 (1996), no. 214, 861 – 875, \?29 – \?31. · Zbl 0848.11048
[16] Karma Dajani and Cor Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002), no. 4, 315 – 327. · Zbl 1030.11035 · doi:10.1016/S0723-0869(02)80010-X
[17] Zoltán Daróczy and Imre Kátai, Univoque sequences, Publ. Math. Debrecen 42 (1993), no. 3-4, 397 – 407. · Zbl 0809.11008
[18] Zoltán Daróczy and Imre Kátai, On the structure of univoque numbers, Publ. Math. Debrecen 46 (1995), no. 3-4, 385 – 408. · Zbl 0874.11013
[19] J. Dufresnoy and Ch. Pisot, Etude de certaines fonctions méromorphes bornées sur le cercle unité. Application à un ensemble fermé d’entiers algébriques, Ann. Sci. Ecole Norm. Sup. (3) 72 (1955), 69 – 92 (French). · Zbl 0064.03703
[20] Pál Erdös, István Joó, and Vilmos Komornik, Characterization of the unique expansions 1=\sum ^{\infty }\?\?\(_{1}\)\?^{-\?\?} and related problems, Bull. Soc. Math. France 118 (1990), no. 3, 377 – 390 (English, with French summary). · Zbl 0721.11005
[21] Paul Glendinning and Nikita Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett. 8 (2001), no. 4, 535 – 543. · Zbl 1002.11009 · doi:10.4310/MRL.2001.v8.n4.a12
[22] Vilmos Komornik and Paola Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998), no. 7, 636 – 639. · Zbl 0918.11006 · doi:10.2307/2589246
[23] Vilmos Komornik, Paola Loreti, and Attila Pethő, The smallest univoque number is not isolated, Publ. Math. Debrecen 62 (2003), no. 3-4, 429 – 435. Dedicated to Professor Lajos Tamássy on the occasion of his 80th birthday. · Zbl 1026.11016
[24] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge, 2002. A collective work by Jean Berstel, Dominique Perrin, Patrice Seebold, Julien Cassaigne, Aldo De Luca, Steffano Varricchio, Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Veronique Bruyere, Christiane Frougny, Filippo Mignosi, Antonio Restivo, Christophe Reutenauer, Dominique Foata, Guo-Niu Han, Jacques Desarmenien, Volker Diekert, Tero Harju, Juhani Karhumaki and Wojciech Plandowski; With a preface by Berstel and Perrin. · Zbl 1001.68093
[25] R. C. Lyndon and M. P. Schützenberger, The equation \?^{\?}=\?^{\?}\?^{\?} in a free group, Michigan Math. J. 9 (1962), 289 – 298. · Zbl 0106.02204
[26] W. Parry, On the \?-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401 – 416 (English, with Russian summary). · Zbl 0099.28103 · doi:10.1007/BF02020954
[27] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477 – 493. · Zbl 0079.08901 · doi:10.1007/BF02020331
[28] R. Salem, Power series with integral coefficients, Duke Math. J. 12 (1945), 153 – 172. · Zbl 0060.21601
[29] Klaus Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), no. 4, 269 – 278. · Zbl 0494.10040 · doi:10.1112/blms/12.4.269
[30] Faouzia Talmoudi, Sur les nombres de \?\cap [1,2], C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 16, A969 – A971 (French, with English summary). · Zbl 0377.12001
[31] Faouzia Lazami Talmoudi, Sur les nombres de \?\cap [1,2[, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 10, A739 – A741 (French, with English summary). · Zbl 0411.12002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.