×

On nonsingularity of a polytope of matrices. (English) Zbl 1152.15026

Given \(k\) real \(n\times n\) matrices \(A_1,\dots,A_k\), the authors study the nonsingularity and stability of the polytope \(\text{conv}\,\{A_1,\dots,A_k\}\) using the Bernstein algorithm of J. Garloff [Interval Comput. 1993, No. 2, 154–168 (1993; Zbl 0829.65017)] and of M. Zettler and J. Garloff [IEEE Trans. Autom. Control 43, No. 3, 425–431 (1998; Zbl 0906.93046)].

MSC:

15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
15A15 Determinants, permanents, traces, other special matrix functions
41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
93D09 Robust stability
Full Text: DOI

References:

[1] Bialas, S., A necessary and sufficient condition for the stability of convex combinations of stable polynomials and matrices, Bull. Polish Acad. Sci. Tech. Sci., 33, 473-480 (1985) · Zbl 0607.93044
[2] Fu, M.; Barmish, B. R., Maximal unidirectional perturbation bounds for stability of polynomials and matrices, Systems Control Lett., 11, 173-179 (1988) · Zbl 0666.93028
[3] Rohn, J., Systems of linear interval equations, Linear Algebra Appl., 126, 39-78 (1989) · Zbl 0712.65029
[4] Saydy, L.; Tits, A. L.; Abed, E. H., Guardian maps and the generalized stability of parametrized families of matrices and polynomials, Math. Control Signals Systems, 3, 345-371 (1990) · Zbl 0716.93043
[5] Barmish, B. R., New Tools for Robustness of Linear Systems (1994), Macmillan: Macmillan New York · Zbl 1094.93517
[6] Monov, V. V., On the spectrum of convex sets of matrices, IEEE Trans. Automat. Control, 44, 5, 1009-1012 (1999) · Zbl 0956.93049
[7] B.R. Barmish, C.A. Floudas, C.V. Hollot, R. Tempo, A global linear programming solution to some open robustness problems including matrix polytope stability, in: Proc. of the American Control Conference, Seattle, Washington, June 1995.; B.R. Barmish, C.A. Floudas, C.V. Hollot, R. Tempo, A global linear programming solution to some open robustness problems including matrix polytope stability, in: Proc. of the American Control Conference, Seattle, Washington, June 1995.
[8] Cohen, N.; Lewkowicz, I., A necessary and sufficient criterion for the stability of a convex set of matrices, IEEE Trans. Automat. Control, 38, 4, 611-615 (1993) · Zbl 0777.93071
[9] Rohn, J., An algorithm for checking stability of symmetric interval matrices, IEEE Trans. Automat. Control, 41, 1, 133-136 (1996) · Zbl 0842.93057
[10] Rohn, J., Positive definiteness and stability of interval matrices, SIAM J. Matrix Anal. Appl., 15, 1, 175-184 (1994) · Zbl 0796.65065
[11] Nemirovskii, A., Several NP-Hard problems arising in robust stability analysis, Math. Control Signals Systems, 6, 99-105 (1993) · Zbl 0792.93100
[12] Vidyasagar, M.; Blondel, V. D., Probabilistic solutions to some NP-hard matrix problems, Automatica, 37, 1397-1405 (2001) · Zbl 1031.93165
[13] Garloff, J., The Bernstein algorithm, Interval Comput., 2, 154-168 (1993) · Zbl 0829.65017
[14] Zettler, M.; Garloff, J., Robustness analysis of polynomials with polynomial parameter dependency using Bernstein expansion, IEEE Trans. Automat. Control, 43, 3, 425-431 (1998) · Zbl 0906.93046
[15] Garloff, J., Convergent bounds for the range of multivariate polynomials, (Interval Mathematics. Interval Mathematics, Lect. Notes Comput. Sci., 212 (1986), Springer), pp. 37-56 · Zbl 0598.65006
[16] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0729.15001
[17] Dzhafarov, V.; Büyükköroğlu, T., On the stability of a convex set of matrices, Linear Algebra Appl., 414, 547-559 (2006) · Zbl 1091.15026
[18] Barnett, S.; Storey, C., Matrix Methods in Stability Theory (1970), Barnes and Noble: Barnes and Noble New York · Zbl 0243.93017
[19] Garloff, J.; Smith, A. P., Investigation of a subdivision based algorithm for solving systems of polynomial equations, Nonlinear Anal., 47, 167-178 (2001) · Zbl 1042.65526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.