×

Statistical learning methods in linear algebra and control problems: The example of finite-time control of uncertain linear systems. (English) Zbl 1007.93064

In state and output feedback, finite-time robust stabilization for linear control systems subject to time-varying norm-bounded uncertainties and to unknown disturbances can be described by using linear matrix inequalities (LMI), a bilinear matrix inequality (BMI), respectively. Approximative solutions for the BMI problem are obtained by empirical risk minimization, where limits on the required number of samples are given.

MSC:

93D21 Adaptive or robust stabilization
15A39 Linear inequalities of matrices

Software:

LMI toolbox
Full Text: DOI

References:

[1] F. Amato, M. Ariola, C.T. Abdallah, P. Dorato, Finite-time stabilization of uncertain linear systems in the presence of disturbances, in: Proceedings of the American Control Conference, San Diego, CA, 1999, pp. 1176-1780; F. Amato, M. Ariola, C.T. Abdallah, P. Dorato, Finite-time stabilization of uncertain linear systems in the presence of disturbances, in: Proceedings of the American Control Conference, San Diego, CA, 1999, pp. 1176-1780
[2] Amato, F.; Ariola, M.; Dorato, P., Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37, 9, 1459-1463 (2001) · Zbl 0983.93060
[3] Barmish, B.; Lagoa, C., The uniform distribution: a rigorous justification for its use in robustness analysis, Math. Control Signals Systems, 10, 203-222 (1997) · Zbl 0892.93042
[4] Barmish, B. R., Stabilization of uncertain systems via linear control, IEEE Trans. Automat. Control, 28, 848-850 (1983) · Zbl 0554.93054
[5] R. Barmish, P.S. Shcherbakov, On avoiding vertexization of robustness problems: the approximate feasibility concept. in: Proceedings of the IEEE Conference on Dec. and Control, Sydney, Australia, 2000, pp. 1031-1036; R. Barmish, P.S. Shcherbakov, On avoiding vertexization of robustness problems: the approximate feasibility concept. in: Proceedings of the IEEE Conference on Dec. and Control, Sydney, Australia, 2000, pp. 1031-1036 · Zbl 1364.93180
[6] Bernstein, D. S., Some open problems in matrix theory arising in linear systems and control, Linear Algebra Appl., 162-164, 409-432 (1992) · Zbl 0765.93026
[7] Blondel, V.; Tsitsiklis, J., NP-hardness of some linear control design problems, SIAM J. Control Optim., 35, 2118-2127 (1997) · Zbl 0892.93050
[8] Blondel, V.; Tsitsiklis, J., A survey of computational complexity results in systems and control, Automatica, 36, 1249-1274 (2000) · Zbl 0989.93006
[9] S. Boyd, L. El-Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Press, Philadelphia, PA, 1994; S. Boyd, L. El-Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Press, Philadelphia, PA, 1994 · Zbl 0816.93004
[10] G. Calafiore, F. Dabbene, R. Tempo, Randomized algorithms for probabilistic robustness with real and complex structured uncertainty, IEEE Trans. Automat. Control 45 (12) (2000) 2218-2235; G. Calafiore, F. Dabbene, R. Tempo, Randomized algorithms for probabilistic robustness with real and complex structured uncertainty, IEEE Trans. Automat. Control 45 (12) (2000) 2218-2235 · Zbl 1056.93599
[11] G. Caliafore, B. Polyak, Fast algorithms for exact and approximate feasibility of robust LMIs, in: Proceedings of the IEEE Conference on Dec. and Control, Sydney, Australia, 2000, pp. 5035-5040; G. Caliafore, B. Polyak, Fast algorithms for exact and approximate feasibility of robust LMIs, in: Proceedings of the IEEE Conference on Dec. and Control, Sydney, Australia, 2000, pp. 5035-5040
[12] de Moor, B., Total least square for affinely structured matrices and the noisy realization problem, IEEE Trans. Acoust. Speech Signal Process., 42, 3104-3113 (1994)
[13] P. Dorato, Short time stability in linear time-varying systems, in: Proceedings of the IRE International Convention Record Part 4, 1961, pp. 83-87; P. Dorato, Short time stability in linear time-varying systems, in: Proceedings of the IRE International Convention Record Part 4, 1961, pp. 83-87
[14] Dudley, R., Central limit theorems for empirical measures, Ann. Probab., 6, 899-929 (1978) · Zbl 0404.60016
[15] El-Ghaoui, L.; Niculescu, S.-I., Robust decision problems in engineering: a linear matrix inequality approach, (El-Ghaoui, L.; Niculescu, S.-I., Advances in Linear Matrix Inequality Methods in Control (2000), SIAM: SIAM Philadelphia, PA), 3-37 · Zbl 0943.93024
[16] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M., LMI Control Toolbox (1995), The Mathworks Inc: The Mathworks Inc Natick, MA
[17] Geromel, J. C.; Peres, P. L.D.; Bernussou, J., On a convex parameter space method for linear control design of uncertain systems, SIAM J. Control Optim., 29, 381-402 (1991) · Zbl 0741.93020
[18] Koltchinskii, V.; Abdallah, C. T.; Ariola, M.; Dorato, P.; Panchenko, D., Improved sample complexity estimates for statistical learning control of uncertain systems, IEEE Trans. Automat. Control, 45, 12, 2383-2388 (2000) · Zbl 0991.93130
[19] Leventides, J.; Karcanias, N., Global asymptotic linearization of the pole placement map: a closed form solution for the constant output feedback problem, Automatica, 31, 1303-1309 (1995) · Zbl 0836.93021
[20] B. Polyak, R. Tempo, Probabilistic robust design with linear quadratic regulators, in: Proceedings of the IEEE Conference on Dec. and Control, Sydney, Australia, 2000, pp. 10377-1042; B. Polyak, R. Tempo, Probabilistic robust design with linear quadratic regulators, in: Proceedings of the IEEE Conference on Dec. and Control, Sydney, Australia, 2000, pp. 10377-1042
[21] Rosenthal, J.; Wang, X., Output feedback pole placement with dynamic compensators, IEEE Trans. Automat. Control, 41, 830-843 (1996) · Zbl 0938.93026
[22] Tempo, R.; Bai, E.; Dabbene, F., Probabilistic robustness analysis: explicit bounds for the minimum number of samples, Systems Control Lett., 30, 237-242 (1997) · Zbl 0901.93017
[23] O. Toker, H. Özbay, On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback, in: Proceedings of the IEEE American Control Conference, Seattle, WA, 1995, pp. 2056-2064; O. Toker, H. Özbay, On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback, in: Proceedings of the IEEE American Control Conference, Seattle, WA, 1995, pp. 2056-2064
[24] van der Vaart, A.; Wellner, J., Weak Convergence and Empirical Processes (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0862.60002
[25] M. Vidyasagar, Statistical learning theory and its applications to randomized algorithms for robust controller synthesis, in: ECC97, volume on Plenary Lectures and Mini-Courses, Brussels, Belgium, 1997, pp. 162-190; M. Vidyasagar, Statistical learning theory and its applications to randomized algorithms for robust controller synthesis, in: ECC97, volume on Plenary Lectures and Mini-Courses, Brussels, Belgium, 1997, pp. 162-190
[26] Vidyasagar, M., A Theory of Learning and Generalization: With Applications to Neural Networks and Control Systems (1997), Springer-Verlag: Springer-Verlag London · Zbl 0928.68061
[27] Vidyasagar, M., Statistical learning theory and randomized algorithms for control, IEEE Control Systems Magazine, 18, 6, 69-85 (1998)
[28] M. Vidyasagar, V. Blondel, Probabilistic solutions to some NP-hard matrix problems, Automatica 37 (9) (2001) 1397-1405; M. Vidyasagar, V. Blondel, Probabilistic solutions to some NP-hard matrix problems, Automatica 37 (9) (2001) 1397-1405 · Zbl 1031.93165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.