×

Arithmetic inflection formulae for linear series on hyperelliptic curves. (English) Zbl 1537.14034

Summary: Over the complex numbers, Plücker’s formula computes the number of inflection points of a linear series of fixed degree and projective dimension on an algebraic curve of fixed genus. Here, we explore the geometric meaning of a natural analog of Plücker’s formula and its constituent local indices in \(\mathbb{A}^1\)-homotopy theory for certain linear series on hyperelliptic curves defined over an arbitrary field.
{© 2023 Wiley-VCH GmbH.}

MSC:

14F42 Motivic cohomology; motivic homotopy theory
14C20 Divisors, linear systems, invertible sheaves
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
11G25 Varieties over finite and local fields
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects)

References:

[1] M.Aubry, and M.Perret, A Weil theorem for singular curves, Arithmetic, geometry, and coding theory, Pellikaan, Perret, Vlǎduț, eds., de Gruyter, New York, 1996.
[2] T.Bachmann and K.Wickelgren, \( \mathbb{A}^1\)‐Euler classes: Six functors formalisms, dualities, integrality and linear subspaces of complete intersections, J. Inst. Math. Jussieu.22 (2021), 1-66. https://doi.org/10.1017/S147474802100027X. · Zbl 1515.14037 · doi:10.1017/S147474802100027X
[3] T.Barnet‐Lamb, D.Geraghty, M.Harris, and R.Taylor, A family of Calabi-Yau varieties and potential automorphy, Publ. RIMS.47 (2011), no. 1, 29-98. · Zbl 1264.11044
[4] B.Bekker and Y.Zarhin, The divisibility by 2 of rational points on elliptic curves, St Petersburg Math. J.29 (2018), 683-713. · Zbl 1393.14030
[5] P.Berthelot, A.Grothendieck, and L.Illusie (eds.), Séminaire de Géométrie Algébrique du Bois Marie 1966‐67, Théorie des intersections et théorème de Riemann-Roch (SGA6), Lect. Notes Math., 225Springer, New York, (1971). · Zbl 0218.14001
[6] C.Bethea, J.Kass, and K.Wickelgren, An example of wild ramification in an enriched Riemann-Hurwitz formula, Motivic homotopy theory and refined enumerative geometry, Contemp. Math.745 (2020), 69-82. · Zbl 1441.14076
[7] I.Biswas, E.Cotterill, and C. GarayLópez, Real inflection points of real hyperelliptic curves, Trans. AMS.372 (2019), no. 7, 4805-4827. arXiv:1708.08400. · Zbl 1461.14010
[8] T.Brazelton, R.Burklund, S.McKean, M.Montoro, and M.Opie, The trace of the local \(\mathbb{A}^1\)-degree, Homology Homotopy Appl.23.1 (2021), 243-255. · Zbl 1456.14027
[9] E.Cotterill and C. GarayLópez, Real inflection points of real linear series on an elliptic curve, Exp. Math.31 (2022), no. 2, 506-517. · Zbl 1492.14056
[10] E.Cotterill, and C. GarayLópez, Inflection divisors of linear series on an elliptic curve, 2018 ICM satellite conference on moduli proceedings, Mat. Contemp.47 (2020), 73-82. arXiv:1903.03222. · Zbl 07842417
[11] D.Cox, J.Little, and H.Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, Amer. Math. Soc., Providence, RI, 2011. · Zbl 1223.14001
[12] P.Deligne, La conjecture de Weil. I., Inst. Hautes Études Sci. Publ. Math.43 (1974), 273-307. · Zbl 0287.14001
[13] D.Eisenbud and J.Harris, Divisors on general curves and cuspidal rational curves, Invent. Math.74 (1983), 371-418. · Zbl 0527.14022
[14] D.Eisenbud and J.Harris, Existence, decomposition, and limits of certain Weierstrass points, Invent. Math.87 (1987), 495-515. · Zbl 0606.14014
[15] I.Gessel, and G.Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math.58 (1985), no. 3, 300-321. · Zbl 0579.05004
[16] M.Homma, Funny plane curves in characteristic \(p>0\), Commun. Algebra.15 (1987), no. 7, 1469-1501. · Zbl 0623.14014
[17] J.Huisman, Algebraic moduli of real elliptic curves, Commun. Algebra.29 (2001), no. 8, 3459-3476. · Zbl 1063.14507
[18] J.Kass and K.Wickelgren, The class of Eisenbud-Khimshiashvili-Levine is the local \(\mathbb{A}^1\)‐Brouwer degree, Duke Math J.168 (2019), no. 3, 429-469. · Zbl 1412.14014
[19] J.Kass and K.Wickelgren, An arithmetic count of the lines on a smooth cubic surface, Compos. Math.157 (2021), no. 4, 677-709. · Zbl 1477.14085
[20] J.Kass and K.Wickelgren, A classical proof that the algebraic homotopy class of a rational function is the residue pairing, Linear Algebra Appl.595 (2020), 157-181. · Zbl 1437.14030
[21] E.Katz, J.Rabinoff, and D.Zureick-Brown, Diophantine and tropical geometry, and uniformity of rational points on curves, Algebraic Geometry: Salt Lake City 2015, AMS Proc. Sympos. Pure Math.97 (2018), 231-279. · Zbl 1451.14071
[22] V.Kharlamov, and F.Sottile, Maximally inflected real rational curves, Moscow Math. J.3 (2003), no. 3, 947-987. · Zbl 1052.14070
[23] F.Klein, Eine neue relation zwischen den singularitäten einer algebraischen curve, Math. Ann.10 (1876), no. 2, 199-209.
[24] T.Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, vol. 67, Amer. Math. Soc.Providence, RI, 2005. · Zbl 1068.11023
[25] M.Levine, Aspects of enumerative geometry with quadratic forms, Doc. Math.25 (2020), 2179-2239. · Zbl 1465.14008
[26] S.McKean, An arithmetic enrichment of Bézout’s theorem, Math. Ann.379 (2021), no. 1, 633-660. · Zbl 1467.14126
[27] W.McCallum, and B.Poonen, The method of Chabauty and Coleman, Explicit methods in number theory; rational points and Diophantine equations, Panoramas et synthèses, Soc. Math. de France. 36 (2012). · Zbl 1377.11077
[28] F.Morel, \( \mathbb{A}^1\)‐algebraic topology over a field, Lec. Notes Math., vol. 2052. Springer, 2012. · Zbl 1263.14003
[29] N.Pflueger, On non‐primitive Weierstrass points, Algebra Number Theory.12 (2018), 1923-1947. · Zbl 1407.14024
[30] E.Previato, Poncelet’s theorem in space, Proc. Amer. Math. Soc.127 (1999), no. 9, 2547-2556. · Zbl 0918.14013
[31] J.‐P.Serre, Lectures on \(N_X(p)\), Research Notes in Mathematics, CRC Press, 2011. · Zbl 1238.11001
[32] J.Silverman, Some arithmetic properties of Weierstrass points: hyperelliptic curves, Bull. Braz. Math. Soc.21 (1990), no. 1, 11-50. · Zbl 0758.14023
[33] P.Srinivasan and K.Wickelgren, An arithmetic count of the lines meeting four lines in \(\mathbb{P}^3\), with an appendix by B.Kadets (ed.), P.Srinivasan (ed.), A. A.Swaminathan (ed.), L.Taylor (ed.), and D.Tseng (ed.), Trans. AMS, in press.
[34] K.‐O.Stöhr, and J. F.Voloch, Weierstrass points and curves over finite fields, Proc. Lond. Math. Soc.52 (1986), no. 3, 1-19. · Zbl 0593.14020
[35] P.Vojta, Jets via Hasse-Schmidt derivatives, Diophantine geometry, CRM Series4 (2007), 335-361. · Zbl 1194.13027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.