×

Ekeland variational principle and its equivalents in \(T_1\)-quasi-uniform spaces. (English) Zbl 1520.58008

Summary: The present paper is concerned with the Ekeland Variational Principle (EkVP) and its equivalents (Caristi-Kirk fixed point theorem, Takahashi minimization principle, Oettli-Théra equilibrium version of EkVP) in quasi-uniform spaces. These extend some results proved by A. Hamel and A. Löhne [in: Nonlinear analysis and applications: To V. Lakshmikantham on his 80th birthday. Vol. 1. Dordrecht: Kluwer Academic Publishers. 577–593 (2003; Zbl 1045.58013)] and A. H. Hamel [Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 62, No. 5, 913–924 (2005; Zbl 1093.49016)] in uniform spaces, as well as those proved in quasi-metric spaces by various authors. The case of \(F\)-quasi-gauge spaces, a non-symmetric version of \(F\)-gauge spaces introduced by J.-X. Fang [J. Math. Anal. Appl. 202, No. 2, 398–412 (1996; Zbl 0859.54042)], is also considered. The paper ends with the quasi-uniform versions of some minimization principles proved by A. V. Arutyunov and B. D. Gel’man [Zh. Vychisl. Mat. Mat. Fiz. 49, No. 7, 1167–1174 (2009; Zbl 1224.58024); translation in Comput. Math., Math. Phys. 49, No. 7, 1111–1118 (2009)] and A. V. Arutyunov [Proc. Steklov Inst. Math. 291, 24–37 (2015; Zbl 1336.49005); translation from Tr. Mat. Inst. Steklova 291, 30–44 (2015)] in complete metric spaces.

MSC:

58E30 Variational principles in infinite-dimensional spaces
54E15 Uniform structures and generalizations
47H10 Fixed-point theorems
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)

References:

[1] Ekeland, I., Sur les problèmes variationnels, C R Acad Sci Paris Sér A-B, 275, 1057-1059 (1972) · Zbl 0249.49004
[2] Ekeland, I., On the variational principle, J Math Anal Appl, 47, 324-353 (1974) · Zbl 0286.49015
[3] Cobzaş, S., Fixed points and completeness in metric and generalized metric spaces, Fund Prikl Mat, 22, 1, 127-215 (2018)
[4] Ekeland, I., Nonconvex minimization problems, Bull Amer Math Soc (NS.), 1, 443-474 (1979) · Zbl 0441.49011
[5] Al-Homidan, S.; Ansari, QH; Kassay, G., Takahashi’s minimization theorem and some related results in quasi-metric spaces, J Fixed Point Theory Appl, 21, 1, 38 (2019) · Zbl 1417.54011
[6] Bao, TQ; Cobzaş, S.; Soubeyran, A., Variational principles, completeness and the existence of traps in behavioral sciences, Ann Oper Res, 269, 53-79 (2018) · Zbl 1476.91113
[7] Cobzaş, S., Completeness in quasi-metric spaces and Ekeland Variational Principle, Topol Appl, 158, 1073-1084 (2011) · Zbl 1217.54026
[8] Cobzaş, SE., Takahashi and Caristi principles in quasi-pseudometric spaces, Topol Appl, 265 (2019) · Zbl 1423.58009
[9] Karapinar, E.; Romaguera, S., On the weak form of Ekeland’s variational principle in quasi-metric spaces, Topol Appl, 184, 54-60 (2015) · Zbl 1309.54012
[10] Cobzaş, S., Ekeland variational principle in asymmetric locally convex spaces, Topol Appl, 159, 2558-2569 (2012) · Zbl 1251.46039
[11] Hamel, AH. Equivalents to Ekeland’s Variational Principle in \(####\)-type topological spaces. Report no. 09. Martin-Luther-University Halle-Wittenberg, Institute of Optimization and Stochastics. 2001.
[12] Hamel, AH., Equivalents to Ekeland’s variational principle in uniform spaces, Nonlinear Anal, 62, 913-924 (2005) · Zbl 1093.49016
[13] Hamel, A, Löhne, A. A minimal point theorem in uniform spaces. In: Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday. Vol. 1, 2. Dordrecht: Kluwer Academic Publishers; 2003. p. 577-593. · Zbl 1045.58013
[14] Frigon, M., On some generalizations of Ekeland’s principle and inward contractions in gauge spaces, J Fixed Point Theory Appl, 10, 279-298 (2011) · Zbl 1252.49019
[15] Fang, J-X., The variational principle and fixed point theorems in certain topological spaces, J Math Anal Appl, 202, 398-412 (1996) · Zbl 0859.54042
[16] Fierro, R., Maximality fixed points and variational principles for mappings on quasi-uniform spaces, Filomat, 31, 5345-5355 (2017) · Zbl 1499.54169
[17] Arutyunov, AV; Gel’man, BD., The minimum of a functional in a metric space, and fixed points, Zh Vychisl Mat Mat Fiz, 49, 1167-1174 (2009) · Zbl 1224.58024
[18] Arutyunov, AV., Caristi’s condition and existence of a minimum of a lower bounded function in a metric space, applications to the theory of coincidence points, Proc Steklov Inst Math, 291, 24-37 (2015) · Zbl 1336.49005
[19] Künzi, H-PA; Mršević, M.; Reilly, IL, Convergence, precompactness and symmetry in quasi-uniform spaces, Math Japon, 38, 239-253 (1993) · Zbl 0783.54022
[20] Fletcher, P.; Lindgren, WF., Quasi-uniform spaces (1982), New York (NY): M. Dekker, New York (NY) · Zbl 0501.54018
[21] Cobzaş, S. Functional analysis in asymmetric normed spaces. Basel: Birkhäuser/Springer Basel AG; 2013. (Frontiers in mathematics). · Zbl 1266.46001
[22] Künzi, H-PA. An introduction to quasi-uniform spaces. In: Mynard F, Pearl E, editors. Beyond topology. Providence (RI): American Mathematical Society; 2009. p. 239-304. (Contemp. Math.; vol. 486). · Zbl 1193.54014
[23] Kelly, JC., Bitopological spaces, Proc London Math Soc, 13, 71-89 (1963) · Zbl 0107.16401
[24] Pervin, WJ., Quasi-uniformization of topological spaces, Math Ann, 147, 316-317 (1962) · Zbl 0101.40501
[25] Kelley, JL. General topology. New York (NY): Springer-Verlag; 1975. (Graduate texts in mathematics, no. 27). · Zbl 0306.54002
[26] Reilly, IL., On generating quasi uniformities, Math Ann, 189, 317-318 (1070) · Zbl 0194.23704
[27] Reilly, IL., On quasi uniform spaces and quasi pseudo metrics, Math Chronicle, 1, part 2, 71-76 (1970) · Zbl 0215.51803
[28] Reilly, IL., Quasi-gauge spaces, J London Math Soc. (2), 6, 481-487 (1973) · Zbl 0257.54034
[29] Reilly, IL; Subrahmanyam, PV; Vamanamurthy, MK., Cauchy sequences in quasi-pseudo-metric spaces, Monatsh Math, 93, 127-140 (1982) · Zbl 0472.54018
[30] Brézis, H.; Browder, FE., A general principle on ordered sets in nonlinear functional analysis, Adv Math, 21, 355-364 (1976) · Zbl 0339.47030
[31] Cârjă, O.; Ursescu, C., The characteristics method for a first order partial differential equation, An Ştiinţ Univ Al I Cuza Iaşi Mat, 39, 4, 367-396 (1993) · Zbl 0842.34021
[32] Cârjă, O, Necula, M. Viability, invariance and applications. Amsterdam: Elsevier Science B.V.; 2017. (North-Holland Mathematics Studies, vol. 207).
[33] Turinici, M., Brezis-Browder principle and dependent choice, An Ştiinţ Univ Al I Cuza Iaşi Mat (NS.), 57, 1, 263-277 (2011) · Zbl 1265.49011
[34] Takahashi, W. Existence theorems generalizing fixed point theorems for multivalued mappings. In: Thećra MA, Baillon J-B, editors. Fixed point theory and applications. (Marseille, 1989). Harlow: Longman Scientific & Technical Publisher; 1991. p. 397-406. (Pitman Res. Notes Math. Ser., vol. 252). · Zbl 0760.47029
[35] Takahashi, W., Nonlinear functional analysis. Fixed point theory and its applications (2000), Yokohama: Yokohama Publishers, Yokohama · Zbl 0997.47002
[36] Arutyunov, AV; Zhukovskiy, SF., Variational principles in analysis and existence of minimizers for functions on metric spaces, SIAM J Optim, 29, 994-1016 (2019) · Zbl 1451.58007
[37] Arutyunov, AV; Zhukovskiy, ES; Zhukovskiy, SE., Caristi-like condition and the existence of minima of mappings in partially ordered spaces, J Optim Theory Appl, 180, 48-61 (2019) · Zbl 1466.49024
[38] Oettli, W.; Théra, M., Equivalents of Ekeland’s principle, Bull Austral Math Soc, 48, 385-392 (1993) · Zbl 0793.54025
[39] Amini-Harandi, A.; Ansari, QH; Farajzadeh, AP., Existence of equilibria in complete metric spaces, Taiwanese J Math, 16, 777-785 (2012) · Zbl 1241.49012
[40] Kirk, WA; Saliga, LM., The Brézis-Browder order principle and extensions of Caristi’s theorem, Nonlinear Anal, 47, 2765-2778 (2001) · Zbl 1042.54506
[41] Goubault-Larrecq, J. Non-Hausdorff topology and domain theory: Selected topics in point-set topology. Cambridge: Cambridge University Press; 2013. (New mathematical monographs, vol. 22). · Zbl 1280.54002
[42] Lin, LJ; Wang, SY; Ansari, QH., Critical point theorems and Ekeland type variational principle with applications, Fixed Point Theory Appl, 2011 (2011) · Zbl 1213.49015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.