×

Two-dimensional boson and \(W\)-symmetry in the quantum Hall effect. (English) Zbl 0895.47055

Summary: We perform consistently the Gupta-Bleuler-Dirac quantization for a two-dimensional boson with parameter \((\alpha)\) on the circle, the boundary of the circular droplet. For \(\alpha=1\), we obtain the chiral (holomorphic) constraints. Using the representation of Bargmann-Fock space and the Schrödinger picture, we construct the holomorphic wave function. In order to interpret this function, we construct the coherent state representation by using the infinite-dimensional translation \((W_\infty)\) symmetry for each Fourier (edge) mode. The \(\alpha=1\) chiral wave function explains the neutral edge states for the integer quantum Hall effect very well. In the case of \(\alpha=-1\), we obtain a new wave function which may describe the higher modes (radial excitations) of edge states. The charged edge states are described by the \(|\alpha|\neq 1\) wave function. Finally, the application of our model to the fractional quantum Hall effect is discussed.

MSC:

47N50 Applications of operator theory in the physical sciences
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R30 Coherent states
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.59.1873 · doi:10.1103/PhysRevLett.59.1873
[2] DOI: 10.1016/0550-3213(84)90453-X · doi:10.1016/0550-3213(84)90453-X
[3] DOI: 10.1103/PhysRevD.44.563 · doi:10.1103/PhysRevD.44.563
[4] DOI: 10.1103/PhysRevLett.60.1692 · Zbl 1129.81328 · doi:10.1103/PhysRevLett.60.1692
[5] DOI: 10.1016/0370-2693(90)90168-6 · doi:10.1016/0370-2693(90)90168-6
[6] DOI: 10.1016/0370-2693(94)90161-9 · doi:10.1016/0370-2693(94)90161-9
[7] DOI: 10.1016/0370-2693(94)90161-9 · doi:10.1016/0370-2693(94)90161-9
[8] DOI: 10.1103/PhysRevLett.64.2206 · doi:10.1103/PhysRevLett.64.2206
[9] DOI: 10.1103/PhysRevLett.64.2206 · doi:10.1103/PhysRevLett.64.2206
[10] DOI: 10.1016/0370-2693(93)91144-C · doi:10.1016/0370-2693(93)91144-C
[11] DOI: 10.1016/0370-2693(93)91144-C · doi:10.1016/0370-2693(93)91144-C
[12] DOI: 10.1016/0370-2693(93)91144-C · doi:10.1016/0370-2693(93)91144-C
[13] DOI: 10.1016/0550-3213(92)90454-J · doi:10.1016/0550-3213(92)90454-J
[14] DOI: 10.1016/0550-3213(92)90454-J · doi:10.1016/0550-3213(92)90454-J
[15] DOI: 10.1016/0550-3213(92)90454-J · doi:10.1016/0550-3213(92)90454-J
[16] DOI: 10.1103/PhysRevLett.50.1395 · doi:10.1103/PhysRevLett.50.1395
[17] DOI: 10.1088/0305-4470/27/11/045 · doi:10.1088/0305-4470/27/11/045
[18] DOI: 10.1142/S0217732393001021 · doi:10.1142/S0217732393001021
[19] DOI: 10.1142/S0217732393001021 · doi:10.1142/S0217732393001021
[20] DOI: 10.1142/S0217732394003786 · Zbl 1021.81543 · doi:10.1142/S0217732394003786
[21] DOI: 10.1142/S0217732394003786 · Zbl 1021.81543 · doi:10.1142/S0217732394003786
[22] DOI: 10.1142/S0217732394003786 · Zbl 1021.81543 · doi:10.1142/S0217732394003786
[23] DOI: 10.1016/0370-2693(89)91418-4 · Zbl 0689.17018 · doi:10.1016/0370-2693(89)91418-4
[24] DOI: 10.1016/0003-4916(91)90177-A · doi:10.1016/0003-4916(91)90177-A
[25] DOI: 10.1103/PhysRevB.42.8399 · doi:10.1103/PhysRevB.42.8399
[26] DOI: 10.1103/PhysRevB.45.14156 · doi:10.1103/PhysRevB.45.14156
[27] DOI: 10.1006/aphy.1996.0021 · Zbl 0879.58085 · doi:10.1006/aphy.1996.0021
[28] DOI: 10.1142/S0217732395002209 · Zbl 1022.81810 · doi:10.1142/S0217732395002209
[29] DOI: 10.1103/PhysRevLett.63.199 · doi:10.1103/PhysRevLett.63.199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.