×

Direct adaptive fuzzy sliding mode control with variable universe fuzzy switching term for a class of MIMO nonlinear systems. (English) Zbl 1264.93120

Summary: Combining adaptive fuzzy sliding mode control with fuzzy or variable universe fuzzy switching technique, this study develops two novel direct adaptive schemes for a class of MIMO nonlinear systems with uncertainties and external disturbances. The proposed control schemes consist of fuzzy equivalent control terms, fuzzy switching control terms (in scheme one) or variable universe fuzzy switching control terms (in scheme two), and compensation control terms. The compensation control terms are used to relax the assumption on fuzzy approximation error. Based on Lyapunov stability theory, the parameters update laws are adaptively tuned online and the global asymptotic stability of the closed-loop system can be guaranteed. The major contribution of this study is to develop a novel framework for designing direct adaptive fuzzy sliding mode control scheme facing model uncertainties and external disturbances. The derived schemes can effectively solve the chattering problem and the equivalent control calculation in that environment. Simulation results performed on a two-link robotic manipulator demonstrate the feasibility of the proposed control schemes.

MSC:

93C42 Fuzzy control/observation systems
93C40 Adaptive control/observation systems
93B12 Variable structure systems
Full Text: DOI

References:

[1] H. Hu and P. Y. Woo, “Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators,” IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 929-940, 2006.
[2] Z. S. Song, J. Q. Yi, D. B. Zhao, and X. Li, “A computed torque controller for uncertain robotic manipulator systems: fuzzy approach,” Fuzzy Sets and Systems, vol. 154, no. 2, pp. 208-226, 2005. · Zbl 1068.93046 · doi:10.1016/j.fss.2005.03.007
[3] J. J. Slotine and W. Li, Applied Nonlinear Control), Prentice-Hall, Englewood Cliffs, NJ, USA, 1991. · Zbl 0753.93036
[4] L. G. Wu, X. J. Su, and P. Shi, “Sliding mode control with bounded L2 gain performance of Markovian jump singular time-delay systems,” Automatica, vol. 48, pp. 1929-1933, 2012. · Zbl 1268.93037
[5] J. T. Fei M and Y. Xin, “Robust adaptive sliding mode controller for semi-active vehicle suspension system,” International Journal of Innovative Computing Information and Control, vol. 8, no. 1, pp. 691-700, 2012.
[6] Q. Khan, A. I. Bhatti, M. Iqbal, et al., “Dynamic integral sliding mode control for SISO uncertain nonlinear systems,” International Journal of Innovative Computing Information and Control, vol. 8, no. 7, pp. 4621-4633, 2012.
[7] M. Ertugrul and O. Kaynak, “Neuro sliding mode control of robotic manipulators,” Mechatronics, vol. 10, pp. 243-267, 2000. · Zbl 1080.93539
[8] X. J. Su, P. Shi, L. G. Wu, et al., “A novel control design on discrete-time Takagi-Sugeno fuzzy systems with timevarying delays,” IEEE Transactions on Fuzzy Systems. In press. · doi:10.1109/TFUZZ.2012.2226941
[9] X. J. Su, P. Shi, L. G. Wu, et al., “A novel approach to filter design for T-S fuzzy discrete-time systems with timevarying delay,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1114-1129, 2012. · doi:10.1109/TFUZZ.2012.2196522
[10] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 807-814, 1992.
[11] L. G. Wu, X. J. Su, P. Shi, et al., “Model approximation for discrete-time state-delay systems in the T-S fuzzy framework,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 366-378, 2011.
[12] Q. Zhou, P. Shi, S. Y. Xu, et al., “Adaptive output feedback control for nonlinear time-delay systems by fuzzy approximation approach. IEEE,” Transactions on Fuzzy Systems. In press. · doi:10.1109/TFUZZ.2012.2213259
[13] Q. Zhou, P. Shi, J. J. Lu, et al., “Adaptive output-feedback fuzzy tracking control for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 5, pp. 972-982, 2011.
[14] T. C. Lin, S. W. Chang, and C. H. Hsu, “Robust adaptive fuzzy sliding mode control for a class of uncertain discrete-time nonlinear systems,” International Journal of Innovative Computing Information and Control, vol. 8, no. 1, pp. 347-359, 2012.
[15] M. Roopaei and M. Zolghadri Jahromi, “Chattering-free fuzzy sliding mode control in MIMO uncertain systems,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 10, pp. 4430-4437, 2009. · Zbl 1167.93362 · doi:10.1016/j.na.2009.02.132
[16] H. T. Yau and C. L. Chen, “Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems,” Chaos, Solitons and Fractals, vol. 30, no. 3, pp. 709-718, 2006.
[17] N. Sadati and R. Ghadami, “Adaptive multi-model sliding mode control of robotic manipulators using soft computing,” Neurocomputing, vol. 71, pp. 2702-2710, 2008.
[18] H. Lee, E. Kim, H.-J. Kang, and M. Park, “A new sliding-mode control with fuzzy boundary layer,” Fuzzy Sets and Systems, vol. 120, no. 1, pp. 135-143, 2001. · Zbl 0988.93045 · doi:10.1016/S0165-0114(99)00072-X
[19] Y. R. Hwang and M. Tomizuka, “Fuzzy smoothing algorithms for variable structure systems,” IEEE Transactions on Fuzzy Systems, vol. 2, no. 4, pp. 277-284, 1994.
[20] M. H. Korayem, R. Haghighi, A. H. Korayem, et al., “Determining maximum load carrying capacity of planar flexiblelink robot: closed-loop approach,” Robotica, vol. 28, pp. 959-973, 2010.
[21] A. Boulkroune, M. Tadjine, M. M’Saad, and M. Farza, “Fuzzy adaptive controller for MIMO nonlinear systems with known and unknown control direction,” Fuzzy Sets and Systems, vol. 161, no. 6, pp. 797-820, 2010. · Zbl 1217.93086 · doi:10.1016/j.fss.2009.04.011
[22] J.-Y. Chen, “Rule regulation of fuzzy sliding mode controller design: direct adaptive approach,” Fuzzy Sets and Systems, vol. 120, no. 1, pp. 159-168, 2001. · Zbl 0974.93547 · doi:10.1016/S0165-0114(99)00111-6
[23] Y. Byungkook and H. Woonchul, “Adaptive fuzzy sliding mode control of nonlinear system,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 315-321, 1998.
[24] H. F. Ho, Y. K. Wong, and A. B. Rad, “Robust fuzzy tracking control for robotic manipulators,” Simulation Modelling Practice and Theory, vol. 15, no. 7, pp. 801-816, 2007.
[25] S. Labiod, M. S. Boucherit, and T. M. Guerra, “Adaptive fuzzy control of a class of MIMO nonlinear systems,” Fuzzy Sets and Systems, vol. 151, no. 1, pp. 59-77, 2005. · Zbl 1142.93365 · doi:10.1016/j.fss.2004.10.009
[26] B. Yoo and W. Ham, “Adaptive fuzzy sliding mode control of nonlinear system,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 315-321, 1998.
[27] S. Frikha, M. Djemel, and N. Derbel, “Observer based adaptive neuro-sliding mode control for MIMO nonlinear systems,” International Journal of Control, vol. 8, no. 2, pp. 257-265, 2010. · Zbl 1202.93074
[28] P. T. Chan, A. B. Rad, and J. Wang, “Indirect adaptive fuzzy sliding mode control. II. Parameter projection and supervisory control,” Fuzzy Sets and Systems, vol. 122, no. 1, pp. 31-43, 2001. · Zbl 0981.93041 · doi:10.1016/S0165-0114(99)00180-3
[29] J. Wang, A. B. Rad, and P. T. Chan, “Indirect adaptive fuzzy sliding mode control. I. Fuzzy switching,” Fuzzy Sets and Systems, vol. 122, no. 1, pp. 21-30, 2001. · Zbl 0981.93040 · doi:10.1016/S0165-0114(99)00179-7
[30] M. Roopaei, M. Zolghadri, and S. Meshksar, “Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 9-10, pp. 3670-3681, 2009. · Zbl 1221.93157 · doi:10.1016/j.cnsns.2009.01.029
[31] P. A. Phan and T. J. Gale, “Direct Adaptive fuzzy control with less restrictions on the control gain,” International Journal of Control Automation and Systems, vol. 5, no. 6, pp. 621-629, 2007.
[32] S. Labiod and T. M. Guerra, “Direct adaptive fuzzy control for a class of MIMO nonlinear systems,” International Journal of Systems Science, vol. 38, no. 8, pp. 665-675, 2007. · Zbl 1128.93032 · doi:10.1080/00207720701500583
[33] H.-X. Li, Z.-H. Miao, and E. S. Lee, “Variable universe stable adaptive fuzzy control of a nonlinear system,” Computers & Mathematics with Applications, vol. 44, no. 5-6, pp. 799-815, 2002. · Zbl 1045.93026 · doi:10.1016/S0898-1221(02)00192-X
[34] S. Aloui, O. Pages, A. El Hajjaji, et al., “Improved fuzzy sliding mode control for a class of MIMO nonlinear uncertain and perturbed systems,” Applied Soft Computing, vol. 11, pp. 820-826, 2011.
[35] H. X. Li, “Interpolation mechanism of fuzzy control,” Science in China E., vol. 41, no. 3, pp. 312-320, 1998. · Zbl 0916.93041 · doi:10.1007/BF02919442
[36] H. X. Li, “Adaptive fuzzy controllers based on variable universe,” Science in China E, vol. 42, no. 1, pp. 10-20, 1999. · Zbl 0935.93042 · doi:10.1007/BF02917053
[37] H. X. Li, “Essence of fuzzy control in mathematics and design on a class of high-accuracy fuzzy controller,” Control theory and Applications, vol. 14, no. 6, pp. 868-876, 1997.
[38] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 2, pp. 146-155, 1993.
[39] M. R. Faieghi, H. Delavari, and D. Baleanu, “A novel adaptive controller for two-degree of freedom polar robot with unknown perturbations,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 1021-1030, 2012. · doi:10.1016/j.cnsns.2011.03.043
[40] V. Nekoukar and A. Erfanian, “Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems,” Fuzzy Sets and Systems, vol. 179, pp. 34-49, 2011. · Zbl 1235.93145 · doi:10.1016/j.fss.2011.05.009
[41] Y. C. Chang, “Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and approaches,” IEEE Transactions on Fuzzy Systems, vol. 9, pp. 278-292, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.