×

Exact likelihood-free Markov chain Monte Carlo for elliptically contoured distributions. (English) Zbl 1329.60246

Summary: Recent results in Markov chain Monte Carlo (MCMC) show that a chain based on an unbiased estimator of the likelihood can have a stationary distribution identical to that of a chain based on exact likelihood calculations. In this paper we develop such an estimator for elliptically contoured distributions, a large family of distributions that includes and generalizes the multivariate normal. We then show how this estimator, combined with pseudorandom realizations of an elliptically contoured distribution, can be used to run MCMC in a way that replicates the stationary distribution of a likelihood based chain, but does not require explicit likelihood calculations. Because many elliptically contoured distributions do not have closed form densities, our simulation based approach enables exact MCMC based inference in a range of cases where previously it was impossible.

MSC:

60J05 Discrete-time Markov processes on general state spaces
60J22 Computational methods in Markov chains
62E17 Approximations to statistical distributions (nonasymptotic)

References:

[1] Agullo, E., J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek and S. Tomov (2009): “Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects,” In: J. Phys.: Conf. Ser., San Diego, CA, USA: IOP Publishing, vol. 180.;
[2] Anderson, T. W. and K.-T. Fang (1982): “Distributions of quadratic forms and Cochran’s theorem for elliptically contoured distributions and their applications.” Technical Report ADA115355, Department of Statistics, Stanford University.;
[3] Andrieu, C. and G. O. Roberts (2009): “The pseudo-marginal approach for efficient Monte Carlo computations,” Ann. Stat., 37, 697-725.; · Zbl 1185.60083
[4] Basu, A. (1964): “Estimates of reliability for some distributions useful in life testing,” Technometrics, 6, 215-219.;
[5] Beaumont, M. A. (2003): “Estimation of population growth or decline in genetically monitored populations,” Genetics, 164, 1139-1160.;
[6] Beaumont, M. A., W. Zhang and D. J. Balding (2002): “Approximate Bayesian computation in population genetics,” Genetics, 162, 2025-2035.;
[7] Beaumont, M. A., J.-M. Cornuet, J.-M. Marin and C. P. Robert (2009): “Adaptive approximate Bayesian computation,” Biometrika, 96, 983-990.; · Zbl 1437.62393
[8] Cambanis, S., S. Huang and G. Simons (1981): “On the theory of elliptically contoured distributions,” J. Multivariate Anal., 11, 368-385.; · Zbl 0469.60019
[9] Chen, Y., T. A. Davis, W. W. Hager and S. Rajamanickam (2008): “Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate,” ACM Trans. Math. Software (TOMS), 35, 22.;
[10] Clauset, A., C. R. Shalizi and M. E. Newman (2009): “Power-law distributions in empirical data,” SIAM review, 51, 661-703.; · Zbl 1176.62001
[11] Cramér, H. (1946): Mathematical methods of statistics, Princeton, New Jersey, USA: Princeton University Press.; · Zbl 0063.01014
[12] Del Moral, P., A. Doucet and A. Jasra (2012): “An adaptive sequential monte carlo method for approximate Bayesian computation,” Stat. Comput., 22, 1009-1020.; · Zbl 1252.65025
[13] Drovandi, C. C. and A. N. Pettitt (2011): “Estimation of parameters for macroparasite population evolution using approximate Bayesian computation,” Biometrics, 67, 225-233.; · Zbl 1217.62128
[14] Eaton, M. L. and C. N. Morris (1970): “The application of invariance to unbiased estimation,” Ann. Math. Stat., 1708-1716.; · Zbl 0227.62018
[15] Fang, K. and Y. Zhang (1990): Generalized multivariate analysis, Berlin, Germany: Springer-Verlag.; · Zbl 0724.62054
[16] Filippi, S., C. P. Barnes, J. Cornebise and M. P. Stumpf (2013): “On optimality of kernels for approximate Bayesian computation using sequential monte carlo,” Stat. Appl. Genet. Mol. Biol., 12, 87-107.;
[17] Genz, A. and F. Bretz (2009): Computation of multivariate normal and t probabilities, Lecture Notes in Statistics, Heidelberg: Springer-Verlag.; · Zbl 1204.62088
[18] Genz, A., F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl and T. Hothorn (2014): mvtnorm: Multivariate Normal and t Distributions, URL , R package version 1.0-0.;
[19] Ghurye, S. and I. Olkin (1969): “Unbiased estimation of some multivariate probability densities and related functions,” Ann. Math. Stat., 40, 1261-1271.; · Zbl 0202.17103
[20] Gupta, A., T. Varga and T. Bodnar (2013): Elliptically contoured models in statistics and portfolio theory, 2nd edition, New York, NY, USA: Springer-Verlag.; · Zbl 1306.62028
[21] Kelker, D. (1970): “Distribution theory of spherical distributions and a location-scale parameter generalization,” Sankhya̅ Ser A, 419-430.; · Zbl 0223.60008
[22] Kotz, S. and S. Nadarajah (2004): Multivariate t-distributions and their applications, Cambridge, UK: Cambridge University Press.; · Zbl 1100.62059
[23] Kotz, S., T. Kozubowski and K. Podgorski (2001): The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance, progress in mathematics series, Boston, MA, USA: Birkhuser Boston.; · Zbl 0977.62003
[24] Lumel’skii, Y. P. and P. Sapozhnikov (1969): “Unbiased estimates of density functions,” Theor. Probab. Appl., 14, 357-364.;
[25] Marjoram, P., J. Molitor, V. Plagnol and S. Tavaré (2003): “Markov chain Monte Carlo without likelihoods,” Proc. Natl. Acad. Sci. USA, 100, 15324-15328.;
[26] Newman, M. E. (2005): “Power laws, Pareto distributions and Zipf’s law,” Contemp. Phys., 46, 323-351.;
[27] Pacini, G. and R. N. Bergman (1986): “MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test,” Comput Methods Programs Biomed., 23, 113-122.;
[28] Robert, C. P., J. M. Cornuet, J. M. Marin and N. S. Pillai (2011): “Lack of confidence in approximate Bayesian computation model choice,” Proc. Natl. Acad. Sci. USA, 108, 15112-15117.;
[29] Sathe, Y. and S. Varde (1969): “On minimum variance unbiased estimation of reliability,” Ann. Math. Stat., 40, 710-714.; · Zbl 0177.22902
[30] Sevcikova, H. and T. Rossini (2012): rlecuyer: R interface to RNG with multiple streams, URL , R package version 0.3-3.;
[31] Shao, J. (2010): Mathematical statistics, Springer Texts in Statistics, Springer.;
[32] Sisson, S. A., Y. Fan and M. M. Tanaka (2007): “Sequential Monte Carlo without likelihoods,” Proc. Natl. Acad. Sci. USA, 104, 1760-1765.; · Zbl 1160.65005
[33] Smith, B. J. (2010): R package magma: Matrix Algebra on GPU and Multicore Architectures, URL , R package version 0.2.2.;
[34] Statisticat, LLC (2014): LaplacesDemon: Complete Environment for Bayesian Inference, URL , R package version 14.06.23.;
[35] Thompson, W. R. (1935): “On a criterion for the rejection of observations and the distribution of the ratio of deviation to sample standard deviation,” Ann. Math. Stat., 6, 214-219.; · Zbl 0012.41102
[36] Wang, D., C. Zhang and X. Zhao (2008): “Multivariate Laplace filter: a heavy-tailed model for target tracking.” In: Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, IEEE. pp. 1-4.;
[37] Watanabe, R. M., H. Allayee, A. H. Xiang, E. Trigo, J. Hartiala, J. M. Lawrence and T. A. Buchanan (2007): “Transcription factor 7-like 2 (TCF7L2) is associated with gestational diabetes mellitus and interacts with adiposity to alter insulin secretion in Mexican Americans,” Diabetes, 56, 1481-1485.;
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.