×

Bayesian quantile semiparametric mixed-effects double regression models. (English) Zbl 07660279

Summary: Semiparametric mixed-effects double regression models have been used for analysis of longitudinal data in a variety of applications, as they allow researchers to jointly model the mean and variance of the mixed-effects as a function of predictors. However, these models are commonly estimated based on the normality assumption for the errors and the results may thus be sensitive to outliers and/or heavy-tailed data. Quantile regression is an ideal alternative to deal with these problems, as it is insensitive to heteroscedasticity and outliers and can make statistical analysis more robust. In this paper, we consider Bayesian quantile regression analysis for semiparametric mixed-effects double regression models based on the asymmetric Laplace distribution for the errors. We construct a Bayesian hierarchical model and then develop an efficient Markov chain Monte Carlo sampling algorithm to generate posterior samples from the full posterior distributions to conduct the posterior inference. The performance of the proposed procedure is evaluated through simulation studies and a real data application.

MSC:

62-XX Statistics

Software:

timereg; GLIM
Full Text: DOI

References:

[1] Aitkin, M., Modelling variance heterogeneity in normal regression using GLIM, Applied Statistics, 36, 2, 332-339 (1987) · doi:10.2307/2347792
[2] Alhamzawi, R.; Ali, H., Bayesian quantile regression for ordinal longitudinal data, Journal of Applied Statistics, 45, 815-828 (2018) · Zbl 1516.62112 · doi:10.1080/02664763.2017.1315059
[3] Cepeda, E.; Gamerman, D., Bayesian modeling of variance heterogeneity in normal regression models, Brazilian Journal of Probability and Statistics, 14, 207-221 (2000) · Zbl 0983.62013 · doi:10.2307/43600978
[4] Chen, X.; Tang, N., Bayesian analysis of semiparametric reproductive dispersion mixed-effects models, Computational Statistics & Data Analysis, 54, 2145-2158 (2010) · Zbl 1284.62168 · doi:10.1016/j.csda.2010.03.022
[5] Chen, Y.; Ye, K., Bayesian hierarchical modelling on dual response surfaces in partially replicated designs, Quality Technology & Quantitative Management, 6, 371-389 (2009) · doi:10.1080/16843703.2009.11673205
[6] Chen, Y.; Ye, K., A Bayesian hierarchical approach to dual response surface modelling, Journal of Applied Statistics, 38, 1963-1975 (2011) · Zbl 1511.62445 · doi:10.1080/02664763.2010.545106
[7] Chib, S.; Greenberg, E., Bayes inference in regression models with ARMA \(####\) errors, Journal of Econometrics, 64, 183-206 (1994) · Zbl 0807.62065 · doi:10.1016/0304-4076(94)90063-9
[8] Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications. In Monographs on statistics and applied probability, vol. 66. Chapman & Hall. · Zbl 0873.62037
[9] Fan, J.; Li, R., New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis, Journal of the American Statistical Association, 99, 710-723 (2004) · Zbl 1117.62329 · doi:10.1198/016214504000001060
[10] Fonseca, T.; Ferreira, Marco A.; Migon, H., Objective Bayesian analysis for the student-t regression model, Biometrika, 95, 325-333 (2008) · Zbl 1400.62260 · doi:10.1093/biomet/asn001
[11] Gelman, A. R., & Gilks, W. (1996). Efficient metropolis jumping rules. In Bayesian statistics, 5 (Alicante, 1994), (pp. 599-607). Oxford Sci. Publ. Oxford University Press.
[12] Geraci, M., Additive quantile regression for clustered data with an application to children’s physical activity, Journal of the Royal Statistical Society. Series C, Applied Statistics, 68, 1071-1089 (2019) · doi:10.1111/rssc.2019.68.issue-4
[13] Geraci, M.; Bottai, M., Linear quantile mixed models, Statistics and Computing, 24, 461-479 (2014) · Zbl 1325.62010 · doi:10.1007/s11222-013-9381-9
[14] Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In Bayesian statistics, 4 (Peñíscola, 1991) (pp. 169-193). Oxford University Press.
[15] He, X.; Fung, W. K.; Zhu, Z., Robust estimation in generalized partial linear models for clustered data, Journal of the American Statistical Association, 100, 1176-1184 (2005) · Zbl 1117.62351 · doi:10.1198/016214505000000277
[16] Hunter, D.; Lange, K., Quantile regression via an MM algorithm, Journal of Computational and Graphical Statistics, 9, 60-77 (2000) · doi:10.2307/1390613
[17] Kai, B.; Li, R.; Zou, H., New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models, The Annals of Statistics, 39, 305-332 (2011) · Zbl 1209.62074 · doi:10.1214/10-AOS842
[18] Kang, S.; Liu, G.; Qi, H.; Wang, M., Bayesian variance changepoint detection in linear models with symmetric heavy-tailed errors, Computational Economics, 52, 459-477 (2018) · doi:10.1007/s10614-017-9690-8
[19] Koenker, R.; Bassett, Jr. G., Regression quantiles, Econometrica, 46, 33-50 (1978) · Zbl 0373.62038 · doi:10.2307/1913643
[20] Koenker, R., Chernozhukov, V., He, X., & Peng, L. (2018). Handbook of quantile regression. In Chapman & Hall/CRC handbooks of modern statistical methods. CRC Press. · Zbl 1395.62003
[21] Koenker, R.; Park, B., An interior point algorithm for nonlinear quantile regression, Journal of Econometrics, 71, 265-283 (1996) · Zbl 0855.62030 · doi:10.1016/0304-4076(96)84507-6
[22] Kotz, S.; Kozubowski, T. J.; Podgórski, K., The laplace distribution and generalizations: A revisit with applications to communications, economics, engineering, and finance (2001), Birkhäuser Boston, Inc · Zbl 0977.62003
[23] Kozumi, H.; Kobayashi, G., Gibbs sampling methods for Bayesian quantile regression, Journal of Statistical Computation and Simulation, 81, 1565-1578 (2011) · Zbl 1431.62018 · doi:10.1080/00949655.2010.496117
[24] Lombardia, M. J.; Sperlich, S., Semiparametric inference in generalized mixed effects models, Journal of the Royal Statistical Society. Series B. Statistical Methodology, 70, 913-930 (2007) · Zbl 1411.62085 · doi:10.1111/j.1467-9868.2008.00655.x
[25] Raftery, A.; Lewis, S., [Practical Markov Chain Monte Carlo]: comment: one long run with diagnostics: implementation strategies for Markov Chain Monte Carlo, Statistical Science, 7, 493-497 (1992) · doi:10.1214/ss/1177011143
[26] Scheike, T. H.; Zhang, M. -J., Analyzing competing risk data using the R timereg package, Journal of Statistical Software, 38, 1-15 (2011) · doi:10.18637/jss.v038.i02
[27] Tang, N.; Duan, X., A semiparametric Bayesian approach to generalized partial linear mixed models for longitudinal data, Computational Statistics & Data Analysis, 56, 4348-4365 (2012) · Zbl 1255.62120 · doi:10.1016/j.csda.2012.03.018
[28] Tian, Y.; Li, E.; Tian, M., Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates, Computational Statistics, 31, 1031-1057 (2016) · Zbl 1347.65034 · doi:10.1007/s00180-016-0659-1
[29] Tian, Y.; Song, X., Bayesian bridge-randomized penalized quantile regression, Computational Statistics & Data Analysis, 144, 106876, 16 (2020) · Zbl 1504.62056 · doi:10.1016/j.csda.2019.106876
[30] Tian, Y.; Tian, M.; Zhu, Q., Linear quantile regression based on EM algorithm, Communication in Statistics - Theory and Methods, 43, 3464-3484 (2014) · Zbl 1302.62160 · doi:10.1080/03610926.2013.766339
[31] Waldmann, E.; Kneib, T.; Yue, Y. R.; Lang, S.; Flexeder, C., Bayesian semiparametric additive quantile regression, Statistical Modelling, 13, 223-252 (2013) · Zbl 07257456 · doi:10.1177/1471082X13480650
[32] Wu, L.; Tian, G.-L.; Zhang, Y.-Q.; Ma, T., Variable selection in joint location, scale and skewness models with a skew-t-normal distribution, Statistics and Its Interface, 10, 217-227 (2017) · Zbl 1388.62052 · doi:10.4310/SII.2017.v10.n2.a6
[33] Xu, D.; Zhang, Z.; Wu, L., Bayesian analysis for semiparametric mixed-effects double regression models, Hacettepe Journal of Mathematics and Statistics, 41, 279-296 (2016) · Zbl 1348.62088
[34] Yang, Y.; Wang, H. J.; He, X., Posterior inference in Bayesian quantile regression with asymmetric Laplace likelihood, International Statistical Review, 84, 327-344 (2016) · Zbl 07763523 · doi:10.1111/insr.12114
[35] Yu, K.; Moyeed, R. A., Bayesian quantile regression, Statistics & Probability Letters, 54, 437-447 (2001) · Zbl 0983.62017 · doi:10.1016/S0167-7152(01)00124-9
[36] Zhang, H.; Huang, Y.; Wang, W.; Chen, H.; Langland-Orban, B., Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features, Statistical Methods in Medical Research, 28, 569-588 (2019) · doi:10.1177/0962280217730852
[37] Zhao, P.; Xue, L., Variable selection for semiparametric varying coefficient partially linear errors-in-variables models, Journal of Multivariate Analysis, 101, 1872-1883 (2010) · Zbl 1190.62090 · doi:10.1016/j.jmva.2010.03.005
[38] Zhao, P.; Xue, L., Variable selection for semiparametric varying-coefficient partially linear models with missing response at random, Acta Mathematica Sinica, English Series, 27, 2205-2216 (2011) · Zbl 1225.62061 · doi:10.1007/s10114-011-9200-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.