×

Composite Gaussian process models for emulating expensive functions. (English) Zbl 1257.62089

Summary: A new type of nonstationary Gaussian process models is developed for approximating computationally expensive functions. The new model is a composite of two Gaussian processes, where the first one captures the smooth global trend and the second one models the local details. The new predictor also incorporates a flexible variance model, which makes it more capable of approximating surfaces with varying volatility. Compared to the commonly used stationary Gaussian process model, the new predictor is numerically more stable and can more accurately approximate complex surfaces when the experimental design is sparse. In addition, the new model can also improve the prediction intervals by quantifying the change of local variability associated with the response. Advantages of the new predictor are demonstrated using several examples.

MSC:

62M20 Inference from stochastic processes and prediction
68U99 Computing methodologies and applications
62M99 Inference from stochastic processes
65C60 Computational problems in statistics (MSC2010)

Software:

spBayes

References:

[1] Ababou, R., Bagtzoglou, A. C. and Wood, E. F. (1994). On the condition number of covariance matrices in kriging, estimation, and simulation of random fields. Math. Geol. 26 99-133. · Zbl 0970.86543 · doi:10.1007/BF02065878
[2] Anderes, E. B. and Stein, M. L. (2008). Estimating deformations of isotropic Gaussian random fields on the plane. Ann. Statist. 36 719-741. · Zbl 1133.62077 · doi:10.1214/009053607000000893
[3] Ankenman, B., Nelson, B. L. and Staum, J. (2010). Stochastic kriging for simulation metamodeling. Oper. Res. 58 371-382. · Zbl 1342.62134 · doi:10.1287/opre.1090.0754
[4] Ba, S. and Joseph, V. R. (2011). Multi-layer designs for computer experiments. J. Amer. Statist. Assoc. 106 1139-1149. · Zbl 1229.62102 · doi:10.1198/jasa.2011.tm10229
[5] Banerjee, S., Charlin, B. P. and Gelfand, A. E. (2003). Hierarchical Modeling and Analysis for Spatial Data . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1053.62105
[6] Cressie, N. A. C. (1991). Statistics for Spatial Data . Wiley, New York. · Zbl 0799.62002
[7] Currin, C., Mitchell, T., Morris, M. and Ylvisaker, D. (1991). Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. J. Amer. Statist. Assoc. 86 953-963. · doi:10.1080/01621459.1991.10475138
[8] Fang, K.-T., Li, R. and Sudjianto, A. (2006). Design and Modeling for Computer Experiments . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1093.62117
[9] Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359-378. · Zbl 1284.62093 · doi:10.1198/016214506000001437
[10] Gramacy, R. B. and Lee, H. K. H. (2008). Bayesian treed Gaussian process models with an application to computer modeling. J. Amer. Statist. Assoc. 103 1119-1130. · Zbl 1205.62218 · doi:10.1198/016214508000000689
[11] Gramacy, R. B. and Lee, H. K. H. (2012). Cases for the nugget in modeling computer experiments. Statist. Comput. 22 713-722. · Zbl 1252.62098 · doi:10.1007/s11222-010-9224-x
[12] Haaland, B. and Qian, P. Z. G. (2011). Accurate emulators for large-scale computer experiments. Ann. Statist. 39 2974-3002. · Zbl 1246.65172
[13] Higdon, D. M., Swall, J. and Kern, J. (1999). Non-stationary spatial modeling. In Bayesian Statistics 6, Proceedings of the Sixth Valencia International Meeting 761-768. Oxford Univ. Press, London. · Zbl 1005.00041
[14] Huang, W., Wang, K., Breidt, F. J. and Davis, R. A. (2011). A class of stochastic volatility models for environmental applications. J. Time Series Anal. 32 364-377. · Zbl 1294.62203 · doi:10.1111/j.1467-9892.2011.00735.x
[15] Joseph, V. R. (2006). Limit kriging. Technometrics 48 458-466. · doi:10.1198/004017006000000011
[16] Joseph, V. R., Hung, Y. and Sudjianto, A. (2008). Blind kriging: A new method for developing metamodels. ASME Journal of Mechanical Design 130 031102-1-8.
[17] Joseph, V. R. and Kang, L. (2011). Regression-based inverse distance weighting with applications to computer experiments. Technometrics 53 254-265. · doi:10.1198/TECH.2011.09154
[18] Paciorek, C. J. and Schervish, M. J. (2006). Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17 483-506. · doi:10.1002/env.785
[19] Peng, C. Y. and Wu, C. F. J. (2012). Regularized kriging. Unpublished manuscript.
[20] Qian, P. Z. G., Seepersad, C. C., Joseph, V. R., Allen, J. K. and Wu, C. F. J. (2006). Building surrogate models with detailed and approximate simulations. ASME Journal of Mechanical Design 128 668-677.
[21] Ranjan, P., Haynes, R. and Karsten, R. (2011). A computationally stable approach to Gaussian process interpolation of deterministic computer simulation data. Technometrics 53 366-378. · doi:10.1198/TECH.2011.09141
[22] Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer experiments. Statist. Sci. 4 409-423. · Zbl 0955.62619 · doi:10.1214/ss/1177012413
[23] Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. J. Amer. Statist. Assoc. 87 108-119.
[24] Santner, T. J., Williams, B. J. and Notz, W. I. (2003). The Design and Analysis of Computer Experiments . Springer, New York. · Zbl 1041.62068
[25] Schmidt, A. M. and O’Hagan, A. (2003). Bayesian inference for nonstationary spatial covariance structure via spatial deformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 745-758. · Zbl 1063.62034 · doi:10.1111/1467-9868.00413
[26] Wackernagel, H. (2003). Multivariate Geostatistics , 3rd ed. Springer, New York. · Zbl 1015.62128
[27] Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J. and Morris, M. D. (1992). Screening, predicting, and computer experiments. Technometrics 34 15-25.
[28] Xiong, Y., Chen, W., Apley, D. W. and Ding, X. (2007). A non-stationary covariance-based kriging method for metamodelling in engineering design. Internat. J. Numer. Methods Engrg. 71 733-756. · Zbl 1194.74553 · doi:10.1002/nme.1969
[29] Yamamoto, J. K. (2000). An alternative measure of the reliability of ordinary Kriging estimates. Math. Geol. 32 489-509. · Zbl 0971.86006 · doi:10.1023/A:1007577916868
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.