×

Lamb wave propagation in a plate with step discontinuities. (English) Zbl 1467.74045

Summary: Ultrasonic Lamb waves are affected by structural discontinuities (e.g. stiffeners, ribs or joints), and it is necessary to understand the quantitative characteristics of their influence on the waves so that the structural features are not misidentified as defects in nondestructive evaluation (NDE) applications. In this paper, the benchmark problem of Lamb wave reflection at a free end as well as the interaction of Lamb waves with upward and downward step discontinuities is solved using an analytical approach. The free-end problem is considered to show the influence of the decaying waves on the power flow in the plate. In all problems, a near-field solution is obtained, and power flows past the cross-sections of the plate are evaluated. Furthermore, amplitude spectra and results for different step sizes are presented. The analytically derived results are compared with those from transient finite element simulations, showing good agreement.

MSC:

74J15 Surface waves in solid mechanics
74J20 Wave scattering in solid mechanics
30C20 Conformal mappings of special domains
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] Gazis, D. C.; Mindlin, R. D., Extensional vibrations and waves in a circular disk and a semi-infinite plate, J. Appl. Mech., 27, 3, 541-547 (1960) · Zbl 0095.40002
[2] Torvik, P. J., Reflection of wave trains in semi-infinite plates, J. Acoust. Soc. Am., 41, 2, 346-353 (1967)
[3] Gregory, R.; Gladwell, I., The reflection of a symmetric Rayleigh-Lamb wave at the fixed or free edge of a plate, J. Elasticity, 13, 2, 185-206 (1983) · Zbl 0545.73017
[4] Ramadas, C.; Balasubramaniam, K.; Joshi, M.; Krishnamurthy, C. V., Interaction of the primary anti-symmetric Lamb mode \((A_0)\) with symmetric delaminations: numerical and experimental studies, Smart Mater. Struct., 18, 8, Article 085011 pp. (2009)
[5] Chakrapani, S. K.; Dayal, V., The interaction of Rayleigh waves with delaminations in composite laminates, J. Acoust. Soc. Am., 135, 5, 2646-2653 (2014)
[6] Koshiba, M.; Karakida, S.; Suzuki, M., Finite-element analysis of Lamb wave scattering in an elastic plate waveguide, IEEE Trans. Sonics Ultrason., 31, 1, 18-25 (1984)
[7] Al-Nassar, Y.; Datta, S.; Shah, A., Scattering of lamb waves by a normal rectangular strip weldment, Ultrasonics, 29, 2, 125-132 (1991)
[8] Chang, Z.; Mal, A., Scattering of lamb waves from a rivet hole with edge cracks, Mech. Mater., 31, 3, 197-204 (1999)
[9] Benmeddour, F.; Grondel, S.; Assaad, J.; Moulin, E., Study of the fundamental Lamb modes interaction with asymmetrical discontinuities, NDT&E Int., 41, 5, 330-340 (2008)
[10] Cho, Y.; Rose, J. L., A boundary element solution for a mode conversion study on the edge reflection of lamb waves, J. Acoust. Soc. Am., 99, 4, 2097-2109 (1996)
[11] Cho, Y., Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47, 3, 591-603 (2000)
[12] Bischoff, S.; Schaal, C.; Gaul, L., Efficient wave scattering analysis for damaged cylindrical waveguides, J. Sound Vib., 333, 18, 4203-4213 (2014)
[13] Grahn, T., Lamb wave scattering from a circular partly through-thickness hole in a plate, Wave Motion, 37, 1, 63-80 (2003) · Zbl 1163.74359
[14] Moreau, L.; Caleap, M.; Velichko, A.; Wilcox, P., Scattering of guided waves by through-thickness cavities with irregular shapes, Wave Motion, 48, 7, 586-602 (2011) · Zbl 1239.74040
[15] Moreau, L.; Caleap, M.; Velichko, A.; Wilcox, P., Scattering of guided waves by flat-bottomed cavities with irregular shapes, Wave Motion, 49, 2, 375-387 (2012) · Zbl 1360.76280
[16] Diligent, O.; Lowe, M. J.S.; Le Clzio, E.; Castaings, M.; Hosten, B., Prediction and measurement of nonpropagating lamb modes at the free end of a plate when the fundamental antisymmetric mode a0 is incident, J. Acoust. Soc. Am., 113, 6, 3032-3042 (2003)
[17] Ruzzene, M., Frequency-wavenumber domain filtering for improved damage visualization, Smart Mater. Struct., 16, 6, 2116 (2007)
[18] Mal, A. K.; Knopoff, L., Transmission of Rayleigh waves past a step change in elevation, Bull. Seismol. Soc. Amer., 55, 2, 319-334 (1965)
[19] Mal, A. K.; Knopoff, L., Transmission of Rayleigh waves at a corner, Bull. Seismol. Soc. Amer., 56, 2, 455-466 (1966)
[20] Chang, Z.; Mal, A., A global-local method for wave propagation across a lap joint, (Ju, J., Numerical Methods in Structural Mechanics, Vol. 204 (1995), ASME), 1-11
[21] Vasudevan, N.; Mal, A., Response of an elastic plate to localized transient sources, J. Appl. Mech., 52, 2, 356-362 (1985)
[23] Kirrmann, P., On the completeness of Lamb modes, J. Elasticity, 37, 1, 39-69 (1994) · Zbl 0818.73018
[24] Castaings, M.; Clezio, E. L.; Hosten, B., Modal decomposition method for modeling the interaction of Lamb waves with cracks, J. Acoust. Soc. Am., 112, 6, 2567-2582 (2002)
[25] Santhanam, S.; Demirli, R., Reflection of Lamb waves obliquely incident on the free edge of a plate, Ultrasonics, 53, 1, 271-282 (2013)
[26] Banerjee, S.; Prosser, W.; Mal, A., Calculation of the response of a composite plate to localized dynamic surface loads using a new wave number integral method, J. Appl. Mech., 72, 1, 18-24 (2005) · Zbl 1111.74319
[27] Lih, S.-S.; Mal, A. K., Elastodynamic response of a unidirectional composite laminate to concentrated surface loads: Part II, J. Appl. Mech., 59, 4, 887-892 (1992)
[28] Baid, H.; Schaal, C.; Samajder, H.; Mal, A., Dispersion of Lamb waves in a honeycomb composite sandwich panel, Ultrasonics, 56, 0, 409-416 (2015)
[29] Mal, A. K.; Singh, S. J., Deformation of Elastic Solids (1991), Prentice Hall: Prentice Hall New Jersey · Zbl 0754.73002
[30] Miklowitz, J., The Theory of Elastic Waves and Waveguides (1978), North Holland: North Holland Amsterdam
[31] Guo, D.; Mal, A., Rapid calculation of Lamb waves in plates due to localized sources, (Thompson, D.; Chimenti, D., Review of Progress in Quantitative Nondestructive Evaluation (1998), Springer: Springer US), 485-492
[32] Mace, B. R.; Duhamel, D.; Brennan, M. J.; Hinke, L., Finite element prediction of wave motion in structural waveguides, J. Acoust. Soc. Am., 117, 5, 2835-2843 (2005)
[33] Gavrić, L., Computation of propagative waves in free rail using a finite element technique, J. Sound Vib., 185, 3, 531-543 (1995) · Zbl 1048.74584
[34] Finnveden, S., Spectral finite element analysis of the vibration of straight fluid-filled pipes with flanges, J. Sound Vib., 199, 1, 125-154 (1997)
[35] Schaal, C.; Bischoff, S.; Gaul, L., Analysis of wave propagation in periodic 3D waveguides, Mech. Syst. Signal Process., 40, 2, 691-700 (2013)
[36] Schaal, C.; Mal, A., Dispersion of guided waves in composite laminates and sandwich panels, Proc. SPIE, 9438 (2015), 94380L-1-94380L-12
[37] Meitzler, A. H., Backwardwave transmission of stress pulses in elastic cylinders and plates, J. Acoust. Soc. Am., 38, 5, 835-842 (1965)
[38] Samajder, H., Lamb wave propagation in elastic plates under various loads (2015), University of California: University of California Los Angeles, (Ph.D. thesis)
[39] Glushkov, E.; Glushkova, N.; Lapina, O., Diffraction of normal modes in composite and stepped elastic waveguides, J. Appl. Math. Mech., 62, 2, 275-280 (1998) · Zbl 1050.74589
[40] Flores-López, M. A.; Douglas Gregory, R., Scattering of Rayleigh-Lamb waves by a surface breaking crack in an elastic plat, J. Acoust. Soc. Am., 119, 4, 2041-2049 (2006)
[41] Mace, B. R.; Manconi, E., Modelling wave propagation in two-dimensional structures using finite element analysis, J. Sound Vib., 318, 45, 884-902 (2008)
[42] Glushkov, Y.; Nikitin, Y., Propagation of energy in a system of joined elastic half-strips of different thickness, J. Appl. Math. Mech., 61, 2, 239-244 (1997) · Zbl 0881.73031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.