×

High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. (English) Zbl 1050.78018

Summary: This paper introduces a series of novel hierarchical implicit derivative matching methods to restore the accuracy of high-order finite-difference time-domain (FDTD) schemes of computational electromagnetics (CEM) with material interfaces in one (1D) and two spatial dimensions (2D). By making use of fictitious points, systematic approaches are proposed to locally enforce the physical jump conditions at material interfaces in a preprocessing stage, to arbitrarily high orders of accuracy in principle. While often limited by numerical instability, orders up to 16 and 12 are achieved, respectively, in 1D and 2D. Detailed stability analyses are presented for the present approach to examine the upper limit in constructing embedded FDTD methods. As natural generalizations of the high-order FDTD schemes, the proposed derivative matching methods automatically reduce to the standard FDTD schemes when the material interfaces are absent. An interesting feature of the present approach is that it encompasses a variety of schemes of different orders in a single code. Another feature of the present approach is that it can be robustly implemented with other high accuracy time-domain approaches, such as the multiresolution time-domain method and the local spectral time-domain method, to cope with material interfaces. Numerical experiments on both 1D and 2D problems are carried out to test the convergence, examine the stability, access the efficiency, and explore the limitation of the proposed methods. It is found that operating at their best capacity, the proposed high-order schemes could be over 2000 times more efficient than their fourth-order versions in 2D. In conclusion, the present work indicates that the proposed hierarchical derivative matching methods might lead to practical high-order schemes for numerical solution of time-domain Maxwell’s equations with material interfaces.

MSC:

78M20 Finite difference methods applied to problems in optics and electromagnetic theory
78A25 Electromagnetic theory (general)
35Q60 PDEs in connection with optics and electromagnetic theory
Full Text: DOI

References:

[1] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagat, 14, 302 (1966) · Zbl 1155.78304
[2] Taflove, A.; Hagness, S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method (2000), Artech House: Artech House Boston, London · Zbl 0963.78001
[3] Zingg, D. W., Comparison of high-accuracy finite difference methods for linear wave propagation, SIAM J. Sci. Comput, 22, 476 (2000) · Zbl 0968.65061
[4] Hesthaven, J. S., High-order accurate methods in time-domain computational electromagnetics. A review, Adv. Imag. Electron Phys, 127, 59 (2003)
[5] Holland, R., Finite difference solutions of Maxwell’s equations in generalized nonorthogonal coordinates, IEEE Trans. Nucl. Sci, 30, 4589 (1983)
[6] Yee, K. S.; Chen, J. S.; Chang, A. H., Conformal finite difference time-domain (FDTD) with overlapping grids, IEEE Trans. Antennas Propagat, 40, 1068 (1992)
[7] Jurgens, T. G.; Taflove, A.; Umashaankar, K.; Moore, T. G., Finite difference time-domain modeling of curved surfaces, IEEE Trans. Antennas Propagat, 40, 357 (1992)
[8] Monk, P.; Suli, E., Error Estimates of Yee’s method on non-uniform grid, IEEE Trans. Magn, 30, 393 (1994)
[9] Taflove, A., Computational Electromagnetics. The Finite Difference Time-Domain Method (1995), Aztech House: Aztech House Boston · Zbl 0840.65126
[10] J. Fang, Time domain finite difference computation for Maxwell’s equations, Ph.D. dissertation, Department of Electrical Engineering, University of California, Berkeley, CA, 1989; J. Fang, Time domain finite difference computation for Maxwell’s equations, Ph.D. dissertation, Department of Electrical Engineering, University of California, Berkeley, CA, 1989
[11] Petropoulos, P. G., Phase error control for FD-TD methods of second and fourth order accuracy, IEEE Trans. Antennas Propagat, 42, 859 (1994)
[12] Zingg, D. W.; Lomax, H.; Jurgens, H., High-accuracy finite-difference schemes for linear wave propagation, SIAM J. Sci. Comput, 17, 328 (1996) · Zbl 0877.65063
[13] Young, J. L.; Gaitonde, D.; Shang, J. S., Towards the construction of a fourth order difference scheme for transient EM wave simulation: Staggered grid approach, IEEE Trans. Antennas Propagat, 45, 1573 (1997) · Zbl 0947.78612
[14] Shang, J. S., High order compact-difference schemes for time-dependent Maxwell equations, J. Comput. Phys, 153, 312 (1998) · Zbl 0956.78018
[15] Turkel, E., High order methods, (Taflove, A., Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (1998), Artech House: Artech House Boston, MA), Chapter 2 · Zbl 1158.76386
[16] Turkel, E.; Yefet, A., On the construction of a high order difference scheme for complex domains in a Cartesian grid, Appl. Numer. Math, 33, 113 (2000) · Zbl 0964.65098
[17] Krumpholz, M.; Katehi, L. P.B., MRTD: New time-domain schemes based on multiresolution analysis, IEEE Trans. Microwave Theory Tech, 44, 555 (1996)
[18] Katehi, L. P.B.; Harvey, J. F.; Tentzeris, E., Time-domain analysis using multiresolution expansions, (Taflove, A., Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (1998), Artech House: Artech House Boston, MA), Chapter 3
[19] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys, 114, 185 (1994) · Zbl 0814.65129
[20] Liu, Q. H., The PSTD algorithm: A time-domain method requiring only two cells per wavelength, Microwave Opt. Techn. Lett, 15, 158 (1997)
[21] Liu, Q. H., Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm, IEEE Trans. Geosic. Remote Sensing, 37, 917 (1999)
[22] Wei, G. W., Discrete singular convolution for the solution of the Fokker-Planck equation, J. Chem. Phys, 110, 8930 (1999)
[23] G.W. Wei, A unified method for solving Maxwell’s equation, in: Proceedings of 1999 Asia-Pacific Microwave Conference, Singapore, 1999, pp. 562-565; G.W. Wei, A unified method for solving Maxwell’s equation, in: Proceedings of 1999 Asia-Pacific Microwave Conference, Singapore, 1999, pp. 562-565
[24] S. Zhao, Aspects of discrete singular convolution for scientific and engineering computing, Ph.D. dissertation, Department of Computational Science, National University of Singapore, Singapore, 2003; S. Zhao, Aspects of discrete singular convolution for scientific and engineering computing, Ph.D. dissertation, Department of Computational Science, National University of Singapore, Singapore, 2003
[25] Bao, G.; Wei, G. W.; Zhao, S., Local spectral time-domain method for electromagnetic wave propagation, Opt. Lett, 28, 513 (2003)
[26] Shao, Z. H.; Wei, G. W.; Zhao, S., DSC time-domain solution of Maxwell’s equations, J. Comput. Phys, 189, 427 (2003) · Zbl 1024.78011
[27] Shao, Z. H.; Shen, Z.; He, Q.; Wei, G. W., A generalized higher-order finite difference time domain method and its application in guided-wave problems, IEEE T. Microwave Theory Tech, 51, 856 (2003)
[28] Mohammadian, A. H.; Shankar, V.; Hall, W. F., Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure, Comput. Phys. Commun, 68, 175 (1991)
[29] Shang, J. S.; Gaitonde, D., Characteristic-based time-dependent Maxwell equation solvers on a general curvilinear frame, AIAA J, 33, 491 (1995) · Zbl 0823.65123
[30] Yee, K. S.; Chen, J. S., The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell’s equations, IEEE Trans. Antennas Propagat, 45, 354 (1997)
[31] Nedelec, J. C., Mixed finite elements in \(R^3\), Numer. Math, 35, 315 (1980) · Zbl 0419.65069
[32] Cangellaris, A. C.; Lin, C. C.; Mei, K. K., Point-matched time-domain finite element methods for electromagnetic radiation and scattering, IEEE Trans. Antennas Propagat, 35, 1160 (1987) · Zbl 0946.78515
[33] Lee, J. F.; Lee, R.; Cangellaris, A., Time-domain finite-element methods, IEEE Trans. Antennas Propagat, 45, 430 (1997) · Zbl 0945.78009
[34] Jin, J. M.; Zunoubi, M.; Donepudi, K. C.; Chew, W. C., Frequency-domain and time-domain finite-element solution of Maxwell’s equations using spectral Lanczos decomposition method, Comput. Meth. Appl. Mech. Eng, 169, 279 (1999) · Zbl 1033.78520
[35] Bossavit, A., A rationale for “Edge-Elements” in 3D fields computations, IEEE Trans. Magn, 24, 74 (1998) · Zbl 0945.78001
[36] Hiptmair, R., Higher order Whitney forms, Progr. Electromagn. Res. PIER, 32, 271 (2001)
[37] Wilton, D. R.; Peterson, A. F.; Graglia, R. G., High order interpolatory vector bases for computational electromagnetics, IEEE Trans. Antennas Propagat, 45, 329 (1997)
[38] Hesthaven, J. S.; Warburton, T., Nodal high order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations, J. Comput. Phys, 181, 186 (2002) · Zbl 1014.78016
[39] Driscoll, T. A.; Fornberg, B., A block pseudospectral method for Maxwell’s equations, I. one-dimensional case, J. Comput. Phys, 140, 47 (1998) · Zbl 0908.65090
[40] Driscoll, T. A.; Fornberg, B., Block pseudospectral methods for Maxwell’s equations, II. two-dimensional, discontinuous-coefficient case, SIAM J. Sci. Comput, 21, 1146 (1999) · Zbl 0949.65107
[41] Yang, B.; Gottlieb, D.; Hesthaven, J. S., Spectral simulations of electromagnetics, J. Comput. Phys, 134, 216 (1997) · Zbl 0883.65098
[42] Yang, B.; Hesthaven, J. S., A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution, IEEE Trans. Antennas Propagat, 47, 132 (1999)
[43] Yang, B.; Hesthaven, J. S., Multidomain pseudospectral computation of Maxwell’s equations in 3-D general curvilinear coordinates, Appl. Numer. Math, 33, 281 (2000) · Zbl 0973.78006
[44] Jurgens, H. M.; Zingg, D. W., Numerical solution of the time-domain Maxwell equations using high-accuracy finite-difference methods, SIAM J. Sci. Comput, 22, 1675 (2000) · Zbl 1049.78025
[45] Ditkowski, A.; Dridi, K.; Hesthaven, J. S., Convergent Cartesian grid methods for Maxwell’s equations in complex geometries, J. Comput. Phys, 170, 39 (2001) · Zbl 1053.78021
[46] Cai, W.; Deng, S. Z., An upwinding embedded boundary method for Maxwell’s equations in media with material interfaces: 2D case, J. Comput. Phys, 190, 159 (2003) · Zbl 1031.78005
[47] Zhang, C. M.; LeVeque, R. J., The immersed interface method for acoustic wave equations with discontinuous coefficients, Wave Motion, 27, 237 (1997) · Zbl 0915.76084
[48] Yefet, A.; Turkel, E., Fourth order compact implicit method for the Maxwell equations with discontinuous coefficients, Appl. Numer. Math, 33, 125 (2000) · Zbl 0964.65099
[49] Yefet, A.; Petropoulos, P. G., A non-dissipative staggered fourth order accurate explicit finite difference scheme for the time-domain Maxwell’s equations, J. Comput. Phys, 168, 286 (2001) · Zbl 0981.78012
[50] Xie, Z. Q.; Chan, C.-H.; Zhang, B., An explicit fourth order staggered finite-difference time-domain method for Maxwell’s equations, J. Comput. Appl. Math, 147, 75 (2002) · Zbl 1014.78015
[51] Xie, Z. Q.; Chan, C.-H.; Zhang, B., An explicit fourth order orthogonal curvilinear staggered-grid FDTD method for Maxwell’s equations, J. Comput. Phys, 175, 739 (2002) · Zbl 1009.78008
[52] Wang, Y.; Zhao, Y. B.; Wei, G. W., A note on the numerical solution of high order differential equations, J. Comput. Appl. Math, 159, 387 (2003) · Zbl 1031.65087
[53] Wei, G. W.; Zhao, Y. B.; Xiang, Y., Discrete singular convolution and its application to the analysis of plates with internal supports. I Theory and algorithm, Int. J. Numer. Meth. Eng, 55, 913 (2002) · Zbl 1058.74643
[54] Bao, G.; Wei, G. W.; Zhao, S., Numerical solution of the Helmholtz equation with high wavenumbers, Int. J. Numer. Methods Eng, 59, 389 (2004) · Zbl 1043.65132
[55] Wei, G. W.; Zhang, D. S.; Kouri, D. J.; Hoffman, D. K., Lagrange distributed approximating functionals, Phys. Rev. Lett, 79, 775 (1997)
[56] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math, 33, 707 (1980) · Zbl 0438.35043
[57] Ziokowski, R., Time-derivative Lorentz-material model-based absorbing boundary condition, IEEE Trans. Antennas Propagat, 45, 1530 (1997)
[58] Abarbanel, S.; Gottlieb, D., On the construction and analysis of absorbing layers in CEM, Appl. Numer. Math, 27, 331 (1998) · Zbl 0924.35160
[59] Fornberg, B., An improved pseudospectral method for initial-boundary value problems, J. Comput. Phys, 91, 381 (1990) · Zbl 0717.65073
[60] Fornberg, B., A Practical Guide to Pseudospectral Methods (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0844.65084
[61] Fornberg, B., Calculation of weights in finite difference formulas, SIAM Rev, 40, 685 (1998) · Zbl 0914.65010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.