×

A second order numerical scheme for solving mixed type boundary value problems involving singular perturbation. (English) Zbl 07809635

Summary: A class of singularly perturbed mixed type boundary value problems is considered here in this work. The domain is partitioned into two subdomains. Convection-diffusion and reaction-diffusion problems are posed on the first and second subdomain, respectively. To approximate the problem, a hybrid scheme which consists of a second-order central difference scheme and a midpoint upwind scheme is constructed on Shishkin-type meshes. We have shown that the proposed scheme is second-order convergent in the maximum norm which is independent of the perturbation parameter. Numerical results are illustrated to support the theoretical findings.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
Full Text: DOI

References:

[1] G. M. Amiraliyev, I. G. Amiraliyeva, and M. Kudu, A numerical treatment for singularly perturbed differential equations with integral boundary condition, Appl. Math. Comput., 185 (2007), 574-582. · Zbl 1113.65076
[2] N. S. Bakhvalov, On the optimization of the methods for solving boundary value problems in the presence of a boundary layer, Zh. Vychisl. Mat. Mat. Fiz., 9(4) (1969), 841-859. · Zbl 0208.19103
[3] I. A. Brayanov, Numerical solution of a mixed singularly perturbed parabolic-elliptic problem, J. Math. Anal. Appl., 320(1) (2006), 361-380. · Zbl 1098.65086
[4] I. A. Brayanov, Uniformly convergent difference scheme for singularly perturbed problem of mixed type, Electron. T. Numer. Ana., 23 (2006), 288-303. · Zbl 1112.65073
[5] M. Cakir, I. Amirali, M. Kudu, and G. M. Amiraliyev, Convergence analysis of the numerical method for a singularly perturbed periodical boundary value problem, J. Math. Computer Sci., 16 (2016), 248-255.
[6] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’ Riordan, and G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman and Hall/CRC Press, New York, 2000. · Zbl 0964.65083
[7] L. Govindarao and J. Mohapatra, A second order numerical method for singularly perturbed delay parabolic partial differential equation, Eng. Comput., 36(2) (2019), 420-444.
[8] L. Govindarao and J. Mohapatra, Numerical analysis and simulation of delay parabolic partial differential equa-tion, Eng. Comput., 37(1) (2019), 289-312.
[9] L. Govindarao and J. Mohapatra, A second order weighted scheme on non-uniform meshes for con-vection diffusion parabolic problems, European J. Comput. Mech., 28(5) (2019), 467-498.
[10] L. Govindarao and J. Mohapatra, A numerical scheme to solve mixed parabolic-elliptic problem involving singular perturbation, Int. J. Comput. Math., (2022). · Zbl 1513.65286
[11] R. B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comput., 32(144) (1978), 1025-1039. · Zbl 0418.65040
[12] M. Kudu, I. Amirali, and G. M. Amiraliyev, A layer analysis of parameterized singularly perturbed boundary value problems Int. J. Appl. Math., 29(4) (2016), 439-449. · Zbl 1411.34034
[13] K. Kumar, P. C. Podila, P. Das, and H. Ramos, A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems, Math. Methods Appl. Sci., 148 (2020), 79-97.
[14] T. Linß, Sufficient conditions for uniform convergence on layer-adapted grids, Appl. Numer. Math., 37(1-2) (2001), 241-255. · Zbl 0976.65084
[15] J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific Co, Singapore, 2012. · Zbl 1243.65002
[16] J. J. H. Miller, E. O’Riordan, G. I.Shishkin and S. Wang, A parameter-uniform Schwarz method for a singularly perturbed reaction diffusion problem with an interior layer, Appl. Numer. Math., 35(4) (2000), 323-337. · Zbl 0967.65086
[17] J. Mohapatra and S. Natesan, Parameter-uniform numerical methods for singularly perturbed mixed boundary value problems using grid equidistribution, J. Appl. Math. Comput., 37(1) (2011), 247-265. · Zbl 1291.65229
[18] K. Mukherjee and S. Natesan, Uniform convergence analysis of hybrid numerical scheme for singularly perturbed problems of mixed type, Numer. Meth. Partial Differ. Equ., 30(6) (2014), 1931-1960. · Zbl 1314.65116
[19] R. E. O’Malley, Introduction to Singular Perturbations, Academic press, New York, 1974. · Zbl 0287.34062
[20] R. M. Priyadharshini, N. Ramanujam, and T. Valanarasu, Hybrid difference schemes for singularly perturbed problem of mixed type with discontinuous source term, J. Appl. Math. Inf., 28(5) (2010), 1035-1054. · Zbl 1278.65113
[21] N. Raji Reddy and J. Mohapatra, An efficient numerical method for singularly perturbed two point boundary value problems exhibiting boundary layers, Natl. Acad. Sci. Lett., 38 (2015), 355-359.
[22] H. G. Roos and H. Zarin, A second-order scheme for singularly perturbed differential equations with discontinuous source term, J. Numer. Math., 10(4) (2002), 275-289. · Zbl 1023.65077
[23] S. R. Sahu and J. Mohapatra, A second-order finite difference scheme for singularly perturbed initial value problem on layer-adapted meshes, Int. J. Model. Simul. Sci. Comput., 10(3) (2019), 1950016.
[24] S. R. Sahu and J. Mohapatra, Numerical investigation for solutions and derivatives of singularly perturbed initial value problems, Int. J. Math. Model. Numer. Opt., 11(2) (2021), 123-142.
[25] D. Shakti and J. Mohapatra, A second order numerical method for a class of parameterized singular perturbation problems on adaptive grid, Nonlinear Engineering, 6(3) (2017), 221-228.
[26] M. Stynes and H. G. Roos, The midpoint upwind scheme, Appl. Numer. Math., 23(3) (1997), 361-374. · Zbl 0877.65055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.