×

Rational spectral collocation and differential evolution algorithms for singularly perturbed problems with an interior layer. (English) Zbl 1460.65094

Summary: We are concerned with using high accuracy numerical methods for solving singularly perturbed problems whose solutions exhibit an interior layer. A rational spectral collocation method in barycentric form with sinh transformation is firstly applied to find the approximate solution to the given problem. The sinh transformation consists of two parameters: the location and the width of the interior layer. With the tool of the asymptotic analysis, the interior layer can be easily located. Then, in determining the width of the interior layer, we design a nonlinear unconstrained optimization problem which is solved by using the basic differential evolution (DE) algorithm. The feasibility and effectiveness of the proposed method is verified by numerical results. The proposed method can also be applied to other singularly perturbed problems.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations

Software:

CMA-ES
Full Text: DOI

References:

[1] Linß, T., Maximum-norm error analysis of a non-monotone fem for a singularly perturbed reaction-diffusion problem, BIT, 47, 379-391 (2007) · Zbl 1221.65175
[2] Cai, X.; Cai, D. L.; Wu, R. Q., High accuracy non-equidistant method for singularly perturbation reaction-diffusion problem, Appl. Math. Mech., 30, 175-182 (2009) · Zbl 1165.65048
[3] Kumar, K., High order compact finite difference scheme for singularly perturbed reaction diffusion problems on a new mesh of Shishkin type, J. Optim. Theory Appl., 143, 123-147 (2009) · Zbl 1177.65125
[4] Linß, T.; Radojev, G.; Zarin, H., Approximation of singularly perturbed reaction-diffusion problems by quadratic \(C^1\) splines, Numer. Algorithms, 61, 35-55 (2012) · Zbl 1267.65092
[5] Vulanović, R.; Teofanov, L., A modificaion of the Shishkin discretization mesh for one-dimensional reaction-diffusion problems, Appl. Math. Comput., 220, 104-116 (2013) · Zbl 1329.65168
[6] Gracica, J. L.; O’Riordan, E.; Pickett, M. L., A parameter robust second order numerical method for a singularly perturbed two-parameter problem, Appl. Numer. Math., 56, 962-980 (2006) · Zbl 1095.65067
[7] Linß, T.; Roos, H.-G., Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters, J. Math. Anal. Appl., 289, 355-366 (2004) · Zbl 1043.65089
[8] Roos, H.-G.; Uzelac, Z., The SDFEM for a convection-diffusion problem with two small parameters, Comput. Methods Appl. Math., 3, 443-458 (2003) · Zbl 1034.65064
[9] Herceg, D., Fourth-order finite-difference method for boundary value problems with two small parameters, Appl. Math. Comput., 218, 616-627 (2011) · Zbl 1228.65114
[10] Kadalbajoo, M. K.; Yadaw, A. S., B-spline collocation mehod for a two-parameter singularly pertubed convection-diffusion boundary value problems, Appl. Math. Comput., 201, 504-513 (2008) · Zbl 1151.65063
[11] Subburayan, V.; Ramanujam, N., An initial value technique for singularly perturbed convection-diffusion problems with a negative shift, J. Optim. Theory Appl., 158, 234-250 (2013) · Zbl 1272.49053
[12] Geng, F. Z.; Qian, S. P.; Li, S., A numerical method for singularly perturbed turning point problems with an interior layer, J. Comput. Appl. Math., 255, 97-105 (2014) · Zbl 1291.65231
[13] Mukherjee, K.; Natesan, S., \( \varepsilon \)-uniform error estimate of hybird numerical scheme for singularly perturbed parabolic problems with interior layers, Numer. Algorithms, 58, 103-141 (2011) · Zbl 1227.65083
[14] Miller, J. J.H.; ORiordan, E.; Shishkin, G. I., A parameter-uniform Schwarz method for a singularly perturbed reaction-diffusion problem with an interior layer, Appl. Numer. Math., 35, 323-337 (2000) · Zbl 0967.65086
[15] Valanarasu, T.; Ramanujam, N., An asymptotic numerical method for singularly perturbed third-order ordinary differential equations with a weak interior layer, Int. J. Comput. Math., 84, 333-346 (2007) · Zbl 1126.65065
[16] O’Riordan, E., A singularly perturbed convection diffusion turning point problem with an interior layer, Comput. Methods Appl. Math., 12, 206-220 (2012) · Zbl 1284.65157
[17] Quinn, J., A numerical method for a nonlinear singularly perturbed interior layer problem using an approximate layer location, J. Comput. Appl. Math., 290, 500-515 (2015) · Zbl 1321.65121
[18] Tang, T.; Trummer, M. R., Boundary layer resolving pseudospectral methods for singular perturbation problems, SIAM J. Sci. Comput., 17, 430-438 (1996) · Zbl 0851.65058
[19] Liu, W.; Tang, T., Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems, Appl. Numer. Math., 38, 315-345 (2001) · Zbl 1023.65115
[20] Baltensperger, R.; Berrut, J. P.; Noël, B., Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Comp., 68, 1109-1120 (1999) · Zbl 0920.65003
[21] Baltensperger, R.; Berrut, J. P.; Dubey, Y., The linear rational pseudospectral method with preassigned poles, Numer. Algorithms, 33, 53-63 (2003) · Zbl 1030.65090
[22] Luo, W.-H.; Huang, T.-Z.; Gu, X.-M., Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations, Appl. Math. Lett., 68, 13-19 (2017) · Zbl 1361.65082
[23] Tee, T. W.; Trefethen, L. N., A rational spectral collocation method with adaptively transformed Chebyshev grid points, SIAM J. Sci. Comput., 28, 1798-1811 (2006) · Zbl 1123.65105
[24] Weideman, J. A.C., Computing the dynamics of complex singularities of nonlinear PDEs, SIAM J. Appl. Dyn. Syst., 2, 171-186 (2003) · Zbl 1088.65582
[25] Chen, S.; Wang, Y., A rational spectral collocation method for third-order singularly perturbed problems, J. Comput. Appl. Math., 307, 93-105 (2016) · Zbl 1382.65221
[26] Wang, Y.; Chen, S.; Wu, X., A rational spectral collocation method for solving a class of parameterized singular perturbation problems, J. Comput. Appl. Math., 233, 2652-2660 (2010) · Zbl 1183.65100
[27] Chen, S.; Wang, Y.; Wu, X., Rational spectral collocation method for a coupled system of singularly perturbed boundary value problems, J. Comput. Math., 29, 458-473 (2011) · Zbl 1249.65263
[28] Storn, R.; Price, K., Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces, J. Global Optim., 11, 341-359 (1997) · Zbl 0888.90135
[29] Abderazek, H.; Ferhat, D.; Atanasovska, I., A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears, Adv. Mech. Eng., 7, 1-11 (2015)
[30] Lobato Jr., F. S.; Steffen, V.; Silva Neto, A. J., Estimation of space-dependent single scattering albedo in a radiative transfer problem using differential evolution, Inverse Probl. Sci. Eng., 20, 1-13 (2012)
[31] Liu, W.; Wang, P.; Qiao, H., Part-based adaptive detection of workpieces using differential evolution, Signal Process., 92, 301-307 (2012)
[32] Maulik, U.; Saha, I., Modified differential evolution based fzzy clustering for pixel classification in remote sensing imagery, Pattern Recognit., 42, 2135-2149 (2009) · Zbl 1192.68592
[33] Das, S.; Konar, A., Automatic imageg pixel clustering with an improved differential evolution, Appl. Soft Comput., 9, 226-236 (2009)
[34] Jiang, L. L.; Maskell, D. L., Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm, Appl. Energy, 112, 185-193 (2013)
[35] Coelho, L. S.; Mariani, V. C.; Leite, J. V., Solution of Jiles-Atherton vector hysteresis parameters estimation by modified Differential Evolution approaches, Expert Syst. Appl., 39, 2021-2025 (2012)
[36] Banerjee, A.; Abu-Mahfouz, I., A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems, Chaos Solitons Fractals, 58, 65-83 (2014) · Zbl 1348.93081
[37] Gong, W.; Cai, Z., Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution, Eng. Appl. Artif. Intell., 27, 28-40 (2014)
[38] Hansen, N.; Ller, S. D.; Koumoutsakos, P., Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol. Comput., 11, 1-18 (2003)
[39] Nelder, J. A.; Mead, R., A simplex method for function minimization, Comput. J., 7, 308-313 (1965) · Zbl 0229.65053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.