×

NIPG finite element method for convection-dominated diffusion problems with discontinuous data. (English) Zbl 07714969

Summary: This paper presents the nonsymmetric interior penalty Galerkin (NIPG) finite element method for a class of one-dimensional convection dominated diffusion problems with discontinuous coefficients. The solution of the considered class of problem exhibits boundary and interior layers. Piecewise uniform Shishkin-type meshes are used for the spatial discretization. The error estimates in the energy norm have been derived for the proposed schemes. Theoretical results are supported by conducting numerical experiments. It is established that the errors are uniform with respect to the perturbation parameter \(\varepsilon\). The uniformness of the error estimates with the perturbation parameter \(\varepsilon\) has also been established numerically for \(L_\infty\)-norm.

MSC:

65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Babu, A. R. and Ramanujam, N. [2011] “ The SDFEM for singularly perturbed convection-diffusion problems with discontinuous source term arising in the chemical reactor theory,” Int. J. Comput. Math.88(8), 1664-1680, https://doi.org/10.1080/00207160.2010.521815. · Zbl 1222.65069
[2] Chandru, M., Das, P. and Ramos, H. [2018] “ Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data,” Math. Methods Appl. Sci.41(14), 5359-5387. · Zbl 1403.35024
[3] Chandru, M., Prabha, T., Das, P. and Shanthi, V. [2019] “ A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms,” Differ. Equ. Dyn. Syst.27(1-3), 91-112, https://doi.org/10.1007/s12591-017-0385-3. · Zbl 1415.35013
[4] Das, P. [2015] “ Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems,” J. Comput. Appl. Math.290, 16-25, https://doi.org/10.1016/j.cam.2015.04.034. · Zbl 1321.65126
[5] Das, P. [2018] “ A higher order difference method for singularly perturbed parabolic partial differential equations,” J. Differ. Equ. Appl.24(3), 452-477, https://doi.org/10.1080/10236198.2017.1420792. · Zbl 1427.65156
[6] Das, P. [2019] “ An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh,” Numer. Algorithms81(2), 465-487, https://doi.org/10.1007/s11075-018-0557-4. · Zbl 1454.65050
[7] Das, P. and Natesan, S. [2014] “ Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems,” Appl. Math. Comput.249, 265-277, https://doi.org/10.1016/j.amc.2014.10.023. · Zbl 1338.65194
[8] Das, P., Rana, S. and Vigo-Aguiar, J. [2020] “ Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature,” Appl. Numer. Math.148, 79-97, https://doi.org/10.1016/j.apnum.2019.08.028. · Zbl 1448.65075
[9] Das, P. and Vigo-Aguiar, J. [2019] “ Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter,” J. Comput. Appl. Math.354, 533-544, https://doi.org/10.1016/j.cam.2017.11.026. · Zbl 1415.65166
[10] Dehghan, M. [2004] “ Numerical solution of the three-dimensional advection-diffusion equation,” Appl. Math. Comput.150(1), 5-19, https://doi.org/10.1016/S0096-3003(03)00193-0. · Zbl 1038.65074
[11] Dehghan, M. [2005] “ On the numerical solution of the one-dimensional convection-diffusion equation,” Math. Probl. Eng.2005(1), 61-74. · Zbl 1073.65551
[12] Dehghan, M. and Mohammadi, V. [2020] “ The boundary knot method for the solution of two-dimensional advection reaction-diffusion and brusselator equations,” Int. J. Numer. Methods Heat Fluid Flow31(1), 106-133.
[13] Farrell, P. A., Hegarty, A. F., Miller, J. J. H., O’Riordan, E. and Shishkin, G. I. [2004] “ Global maximum norm parameter-uniform numerical method for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient,” Math. Comput. Model.40(11-12), 1375-1392, https://doi.org/10.1016/j.mcm.2005.01.025. · Zbl 1075.65100
[14] Gharibi, Z. and Dehghan, M. [2021] “ Convergence analysis of weak Galerkin flux-based mixed finite element method for solving singularly perturbed convection-diffusion-reaction problem,” Appl. Numer. Math.163, 303-316, https://doi.org/10.1016/j.apnum.2021.01.016. · Zbl 1459.65221
[15] Kadalbajoo, M. K. and Gupta, V. [2010] “ A brief survey on numerical methods for solving singularly perturbed problems,” Appl. Math. Comput.217(8), 3641-3716, https://doi.org/10.1016/j.amc.2010.09.059. · Zbl 1208.65105
[16] Kadalbajoo, M. K. and Reddy, Y. N. [1989] “ Asymptotic and numerical analysis of singular perturbation problems: A survey,” Appl. Math. Comput.30(3), 223-259, https://doi.org/10.1016/0096-3003(89)90054-4. · Zbl 0678.65059
[17] Kumar, K., Podila, P. C., Das, P. and Ramos, H. [2021] “ A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems,” Math. Methods Appl. Sci.44(16), 12332-12350, https://doi.org/10.1002/mma.7358. · Zbl 1512.65180
[18] Li, B. Q. [2006] Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, (Springer-Verlag, London). · Zbl 1110.76001
[19] Lin, R. [2009] “ Discontinuous Galerkin least-squares finite element methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities,” Numer. Math.112(2), 295-318, https://doi.org/10.1007/s00211-008-0208-0. · Zbl 1163.65087
[20] Linß, T. [2001] “ Sufficient conditions for uniform convergence on layer-adapted grids,” Appl. Numer. Math.37(1-2), 241-255, https://doi.org/10.1016/S0168-9274(00)00043-X. · Zbl 0976.65084
[21] Miller, J. J. H., O’Riordan, E., Shishkin, G. I. and Wang, S. [2000] “ A parameter-uniform Schwarz method for a singularly perturbed reaction-diffusion problem with an interior layer,” Appl. Numer. Math.35(4) 323-337, https://doi.org/10.1016/S0168-9274(99)00140-3. · Zbl 0967.65086
[22] Reed, W. H. and Hill, T. R. [1973] Triangular mesh methods for the neutron transport equation, Technical Report (Los Alamos Scientific Laboratory, New Mexico).
[23] Rivière, B., Wheeler, M. F. and Girault, V. [1999] “ Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I,” Comput. Geosci.3, 337-360, https://doi.org/10.1023/A:1011591328604. · Zbl 0951.65108
[24] Rivière, B. [2008] Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and implementation, Frontiers in Applied Mathematics, Vol. 35 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA). · Zbl 1153.65112
[25] Roos, H.-G., Stynes, M. and Tobiska, L. [2008] Robust Numerical Methods for Singularly Perturbed Differential Equations, Convection-diffusion-reaction and Flow Problems, 2nd Edition, , Vol. 24 (Springer-Verlag, Berlin). · Zbl 1155.65087
[26] Roos, H.-G. and Zarin, H. [2002] “ A second-order scheme for singularly perturbed differential equations with discontinuous source term,” J. Numer. Math.10(4), 275-289, https://doi.org/10.1515/JNMA.2002.275. · Zbl 1023.65077
[27] Roos, H.-G. and Zarin, H. [2003] “ The streamline-diffusion method for a convection-diffusion problem with a point source,” J. Comput. Appl. Math.150(1), 109-128, https://doi.org/10.1016/S0377-0427(02)00568-X. · Zbl 1016.65054
[28] Shakti, D., Mohapatra, J., Das, P. and Vigo-Aguiar, J. [2022] “ A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms,” J. Comput. Appl. Math.404, 113167, https://doi.org/10.1016/j.cam.2020.113167. · Zbl 1503.65184
[29] Shishkin, G. I. and Shishkina, L. P. [2009] Difference Methods for Singular Perturbation Problems, , Vol. 140 (CRC Press, Boca Raton, FL). · Zbl 1163.65062
[30] Zarin, H. and Roos, H.-G. [2005] “ Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers,” Numer. Math.100(4), 735-759, https://doi.org/10.1007/s00211-005-0598-1. · Zbl 1100.65105
[31] Zarin, H. and Roos, H.-G. [2017] “On the discontinuous Galerkin finite element method for reaction-diffusion problems: Error estimates in energy and balanced norms,” arXiv:1705.04126.
[32] Zarin, H. [2014] “ On discontinuous Galerkin finite element method for singularly perturbed delay differential equations,” Appl. Math. Lett.38, 27-32, https://doi.org/10.1016/j.aml.2014.06.013. · Zbl 1314.65089
[33] Zhang, J., Ma, X. and Lv, Y. [2021] “ Finite element method on Shishkin mesh for a singularly perturbed problem with an interior layer,” Appl. Math. Lett.121, 107509, https://doi.org/10.1016/j.aml.2021.107509. · Zbl 1524.65290
[34] Zhu, P., Yang, Y. and Yin, Y. [2015] “ Higher order uniformly convergent NIPG methods for 1-d singularly perturbed problems of convection-diffusion type,” Appl. Math. Model.39(22), 6806-6816, https://doi.org/10.1016/j.apm.2015.02.021. · Zbl 1443.65111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.