×

A Bishop-Phelps-Bollobás theorem for Asplund operators. (English) Zbl 1455.46013

By definition, a pair \((X,Y)\) of Banach spaces has the Bishop-Phelps-Bollobás property (BPBp for short) if for every \(\varepsilon>0\) there exists \(\eta(\varepsilon)>0\) such that for every operator \(T\in \mathcal{L}(X,Y)\) with \(\|T\|=1\) and \(x_0\in S_X\) such that \(\|Tx_0\|>1-\eta(\varepsilon)\), there exist \(S\in \mathcal{L}(X,Y)\) and \(x\in S_X\) with \[ \|S\|=\|Sx\|=1, \quad \|S-T\|<\varepsilon, \quad \text{and} \quad \|x_0-x\|<\varepsilon. \tag{*} \] Among many other results, it is known that the BPBp holds true when \(Y\) has Lindenstrauss’s property \(\beta\) [M. D. Acosta et al., J. Funct. Anal. 254, No. 11, 2780–2799 (2008; Zbl 1152.46006)], in particular, if \(c_0\subset Y \subset \ell_\infty\) or if \(Y\) is a finite-dimensional polyhedral space. On the other hand, there are Banach spaces \(Y\) such that the pair \((\ell_1^2,Y)\) fails the BPBp even though all elements in \(\mathcal{L}(\ell_1^2,Y)\) attain their norms [loc.cit.]; moreover, this \(Y\) can be found in such a way that for every Banach space \(X\) norm attaining operators are dense in \(\mathcal{L}(X,Y)\) [R. Aron et al., Trans. Am. Math. Soc. 367, No. 9, 6085–6101 (2015; Zbl 1331.46008)].
When a pair \((X,Y)\) does not enjoy the BPBp, one can ask what additional properties of \(T\in \mathcal{L}(X,Y)\) may ensure the existence of approximation (\(*\)). An important example of such kind of theorems was given by R. M. Aron et al. [Proc. Am. Math. Soc. 139, No. 10, 3553–3560 (2011; Zbl 1235.46013)], where it was demonstrated that for arbitrary \(X\) and for \(Y = C(K)\) the approximation exists for Asplund operators. The paper under review is developing the latter line of research. The authors introduce the notion of generic Fréchet differentiability operator. This name is given to those \(T\in \mathcal{L}(X,Y)\) for which the map \(x \mapsto \|T(x)\|\) is Fréchet differentiable on a dense \(G_\delta\) subset of \(X\). They study properties of this class, the relationship with Asplund operators and with \(\Gamma\)-flat operators, introduced in [B. Cascales et al., J. Funct. Anal. 274, No. 3, 863–888 (2018; Zbl 1396.46006)]. This concept allows to give a new proof of the Aron-Cascales-Kozhushkina theorem [Aron et al., loc.cit.]with the sharp estimate \(\eta(\varepsilon) = \varepsilon^2/2\). The authors also demonstrate a dual version of the Bishop-Phelps-Bollobás property for strong Radon-Nikodým operators \(T: \ell_1 \to Y\).
The paper contains all the necessary preliminaries for its understanding.

MSC:

46B04 Isometric theory of Banach spaces
58C20 Differentiation theory (Gateaux, Fréchet, etc.) on manifolds
46E25 Rings and algebras of continuous, differentiable or analytic functions
47B07 Linear operators defined by compactness properties
47B48 Linear operators on Banach algebras
Full Text: DOI

References:

[1] Acosta, M. D.; Aron, R. M.; García, D., The Bishop-Phelps-Bollobás theorem for operators, J. Funct. Anal., 254, 11, 2780-2799 (2008) · Zbl 1152.46006 · doi:10.1016/j.jfa.2008.02.014
[2] Aron, R. M.; Cascales, B.; Kozhushkina, O., The Bishop-Phelps-Bolloás theorem and Asplund operators, Proc. Amer. Math. Soc., 139, 3553-3560 (2011) · Zbl 1235.46013 · doi:10.1090/S0002-9939-2011-10755-X
[3] Asplund, E., Fréchet differentiability of convex functions, Acta Math., 121, 31-47 (1968) · Zbl 0162.17501 · doi:10.1007/BF02391908
[4] Bishop, E.; Phelps, R. R., A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67, 97-98 (1961) · Zbl 0098.07905 · doi:10.1090/S0002-9904-1961-10514-4
[5] Bollobás, B., An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc., 2, 181-182 (1970) · Zbl 0217.45104 · doi:10.1112/blms/2.2.181
[6] Bourgain, J., On dentability and the Bishop-Phelps property, Israel J. Math., 28, 4, 265-271 (1977) · Zbl 0365.46021 · doi:10.1007/BF02760634
[7] Bourgin, R. D., Geometric Aspects of Convex Sets with the Radon-Nikodym Property (1983), New York: Springer-Verlag, New York · Zbl 0512.46017
[8] Brøndsted, A.; Rockafellar, R. T., On the subdifferentiability of convex functions, Proc. Amer. Math. Soc., 16, 605-611 (1965) · Zbl 0141.11801 · doi:10.1090/S0002-9939-1965-0178103-8
[9] Cascales, B.; Guirao, A. J.; Kadets, V., A Bishop-Phelps-Bollobáas type theorem for uniform algebras, Adv. Math., 240, 370-382 (2013) · Zbl 1298.46010 · doi:10.1016/j.aim.2013.03.005
[10] Cascales, B.; Guirao, A. J.; Kadets, V., Γ-flatness and Bishop-Phelps-Bollobás type theorems for operators, J. Funct. Anal., 274, 3, 863-888 (2018) · Zbl 1396.46006 · doi:10.1016/j.jfa.2017.10.020
[11] Diestel, J., Uhl Jr. J. J.: Vector Measures, Math. Surveys 15, Amer. Math. Soc. 1977 · Zbl 0369.46039
[12] Edgar, G. A.; Sucheston, L., Stopping times and directed processes, Encyclopedia of Mathematics and its Applications (1992), Cambridge: Cambridge University Press, Cambridge · Zbl 0779.60032
[13] Fabian, M., Gateaux differentiability of Convex Functions and Topology (1997), New York: John Wiley & Sons, New York · Zbl 0883.46011
[14] Fitzpatrick, S. P., Separably related sets and the Radon-Nikodym property, Illinois J. Math., 29, 229-247 (1985) · Zbl 0546.46009 · doi:10.1215/ijm/1256045727
[15] Kenderov, P. S., Monotone operators in Asplund spaces, C. R. Acad. Bulgare Sci., 30, 963-964 (1977) · Zbl 0377.47036
[16] Labuschagne, C. C A., A Dodds-Fremlin property for Asplund and Radon-Nikodßym operators, Positivity, 10, 391-407 (2006) · Zbl 1108.47037 · doi:10.1007/s11117-005-0023-0
[17] Linde, W., An operator ideal in connection with the Radon-Nikodßym property of Banach spaces, Math. Nacht., 71, 65-73 (1976) · Zbl 0328.47011 · doi:10.1002/mana.19760710105
[18] Lindenstrauss, J., On operators which attain their norm, Israel J. Math., 1, 139-148 (1963) · Zbl 0127.06704 · doi:10.1007/BF02759700
[19] Lindenstrauss, J.; Tzafriri, L., Classical Banach spaces I, Sequence Spaces (1977), Berlin: Springer-Verlag, Berlin · Zbl 0362.46013
[20] Lomonosov, V., On the Bishop-Phelps theorem in complex spaces, Quaest. Math., 23, 2, 187-191 (2000) · Zbl 0964.46007 · doi:10.2989/16073600009485967
[21] Namioka, I.; Phelps, R. R., Banach spaces which are Asplund spaces, Duke Math. J., 42, 4, 735-750 (1975) · Zbl 0332.46013 · doi:10.1215/S0012-7094-75-04261-1
[22] Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability, Lect. Notes in Math., Vol. 1364, Springer-Verlag, 1989 · Zbl 0658.46035
[23] Phelps, R. R., The Bishop-Phelps theorem, Ten Mathematical Essays on Approximation in Analysis and Topology, 235-244 (2005), Amsterdam: Elsevier B. V., Amsterdam · Zbl 1087.46012
[24] Rainwater, J., Yet more on the differentiability of convex functions, Proc. Amer. Math. Soc., 103, 3, 773-778 (1988) · Zbl 0661.49007 · doi:10.1090/S0002-9939-1988-0947656-7
[25] Reinov, O. J., Operators of type RN in Banach spaces (Russian), Soviet Math. Dokl., 16, 119-123 (1975) · Zbl 0317.47022
[26] Reinov, O. J., Geometric characterization of RN-operators, Matematicheskie Zametki, 22, 189-202 (1977) · Zbl 0371.47031
[27] Stegall, C., The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc., 206, 213-223 (1975) · Zbl 0318.46056 · doi:10.1090/S0002-9947-1975-0374381-1
[28] Stegall, C., The Radon-Nikodßym property in conjugate Banach spaces II, Trans. Amer. Math. Soc., 264, 507-519 (1981) · Zbl 0475.46016
[29] Wu, C.; Cheng, L., A note on the differentiability of convex functions, Proc. Amer. Math. Soc., 121, 4, 1057-1062 (1994) · Zbl 0806.46044 · doi:10.1090/S0002-9939-1994-1207535-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.