×

From \(\mathcal{H}^\infty\) to \(\mathcal{N}\). Pointwise properties and algebraic structure in the Nevanlinna class. (English) Zbl 1450.30072

This interesting survey is concerned with properties of the Nevanlinna class of holomorphic functions versus the class \(H^\infty(\mathbb D)\) of bounded holomorphic functions in the unit disk. Formally defined as \[N=\Big\{f\in H(\mathbb D): \sup_{ 0 < r < 1} \int_0^{2\pi} \log^+|f(re^{it})|dt<\infty\Big\},\] it coincides with quotients \(f/g\) of bounded holomorphic functions, where \(g\) is zero-free. Considered are interpolating sequences, sets of determination, ideal theoretic questions (Corona theorem and finitely generated ideals), invertibility in quotient algebras. Many of the classical results for \(H^\infty\) have their analogues in \(N\): the role of uniform bounds is now played by a specific growth control via positive harmonic functions. These were mainly developed by the authors in cooperation with A. Hartmann and A. Nicolau. There are also several differences which are recapped by the authors: for instance if \(b\) is a Blaschke product, then the corona theorem holds in the quotient space \(N/bN\) if and only if \(b\) is a finite product of Blaschke products whose zeros are interpolating for \(N\). This dramatically contrasts the situation for quotient algebras \(H^\infty/bH^\infty\), the theory of which was developed by P. Gorkin et al. [J. Funct. Anal. 255, No. 4, 854–876 (2008; Zbl 1161.46028)].

MSC:

30H15 Nevanlinna spaces and Smirnov spaces
30H05 Spaces of bounded analytic functions of one complex variable
30H80 Corona theorems
30J10 Blaschke products

Citations:

Zbl 1161.46028

References:

[1] H. Bass, K-theory and stable algebra, Inst. Hautes Etudes Sci. Publ. Math. 22 (1964), 5-60.
[2] A. Borichev, Generalized Carleson-Newman inner functions, Math. Z. 275 (2013), 1197-1206. · Zbl 1316.30047
[3] A. Borichev, A. Nicolau, P.J. Thomas, Harmonic and superharmonic majorants on the disk. Bull. London Math. Soc. 38 (2006), 250-260. · Zbl 1122.31001
[4] A. Borichev, A. Nicolau, P.J. Thomas, Weak embedding property, inner functions and entropy. Math. Ann. 368 (2017), no. 3-4, 987-1015. · Zbl 1376.30039
[5] J. Bourgain, On finitely generated closed ideals in H^∞𝔻. Ann. Inst. Fourier (35), n 4 (1985), 163-174. · Zbl 0564.46044
[6] L. Brown, A. Shields, K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc. 96 (1960), 162-183. · Zbl 0096.05103
[7] J. Bruna, A. Nicolau, K. Øyma, A note on interpolation in the Hardy spaces of the unit disc. Proc. Amer. Math. Soc. 124 (1996), no. 4, 1197-1204. · Zbl 0841.30032
[8] G. Corach, D. Suárez, On the stable range of uniform algebras and H^∞. Proc. Amer. Math. Soc. 98 (1986), no. 4, 607-610. · Zbl 0625.46060
[9] U. Daepp, P. Gorkin, R. Mortini, Finitely generated radical ideals in H^∞. Proc. Amer. Math. Soc. 116 (1992), no. 2, 483-488. · Zbl 0790.46044
[10] S. J. Gardiner, Sets of determination for the Nevanlinna class, Bull. London Math. Soc. 42 (2010), 1115-1120. · Zbl 1211.30065
[11] J. B. Garnett, Bounded analytic functions. Revised first edition. Graduate Texts in Mathematics, 236. Springer, New York, 2007. xiv+459 pp. · Zbl 0469.30024
[12] J. B. Garnett, F. W. Gehring, P. W. Jones, Conformally invariant length sums. Indiana Univ. Math. J. 32 (1983), no. 6, 809-829. · Zbl 0541.30013
[13] P. Gorkin, K. Izuchi, R. Mortini, Higher order hulls in H^∞ II. J. Funct. Anal. 177 (2000), no. 1, 107-129. · Zbl 0982.46035
[14] P. Gorkin, R. Mortini, Two new characterizations of Carleson-Newman Blaschke products. Israel J. Math. 177 (2010), 267-284. · Zbl 1217.30050
[15] P. Gorkin, R. Mortini, Hulls of closed prime ideals in H^∞. Illinois J. Math. 46 (2002), no. 2, 519-532. · Zbl 1030.46062
[16] P. Gorkin, R. Mortini, Alling’s conjecture on closed prime ideals in H^∞. J. Funct. Anal. 148 (1997), no. 1, 185-190. · Zbl 0887.46032
[17] P. Gorkin, R. Mortini, A. Nicolau, The generalized corona theorem. Math. Ann. 301 (1995), no. 1, 135-154. · Zbl 0834.46034
[18] P. Gorkin, R. Mortini, N. Nikolski, Norm controlled inversions and a corona theorem for H^∞-quotient algebras. J. Funct. Anal. 255 (2008), 854-876. · Zbl 1161.46028
[19] A. Hartmann, Une approche de l’interpolation libre généralisée par la théorie des opérateurs et caractérisation des traces H^p|. (French) [An approach to generalized free interpolation using operator theory and characterization of the traces H^p|.] J. Operator Theory 35 (1996), no. 2, 281-316. · Zbl 0869.47011
[20] A. Hartmann, X. Massaneda, A. Nicolau, Finitely generated ideals in the Nevanlinna class. Israel J. Math. 231 (2019), no. 1, 139-179. · Zbl 1425.46036
[21] A. Hartmann, X. Massaneda, A. Nicolau, Traces of the Nevanlinna class on discrete sequences. Complex Anal. and Oper. Theory 12 (2018), no. 8, 1945-1958. · Zbl 1407.30028
[22] A. Hartmann, X. Massaneda, A. Nicolau, P. J. Thomas, Interpolation in the Nevanlinna class and harmonic majorants, J. Funct. Anal. 217 (2004), 1-37. · Zbl 1068.30027
[23] W. K. Hayman and T. J. Lyons, Bases for positive continuous functions, J. London Math. Soc. 42 (1990), 292-308. · Zbl 0675.30040
[24] P. W. Jones, D. Marshall, T. Wolff, Stable rank of the disc algebra. Proc. Amer. Math. Soc. 96 (1986), no. 4, 603-604. · Zbl 0626.46043
[25] A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction. Canad. J. Math. 21 (1969), 531-534. · Zbl 0206.08702
[26] R. Martin, On the ideal structure of the Nevanlinna class. Proc. Amer. Math. Soc. 114 (1992), no. 1, 135-143. · Zbl 0788.30022
[27] X. Massaneda, A. Nicolau, P.J. Thomas, The Corona property in Nevanlinna quotient algebras and interpolating sequences. J. Funct. Anal. 276 (2019), no. 8, 2636-2661. · Zbl 1441.30079
[28] X. Massaneda, J. Ortega-Cerdà, M. Ounaïes, Traces of Hörmander algebras on discrete sequences. Analysis and Mathematical Physics. Birkhäuser Verlag (2009), 397-408. · Zbl 1297.30058
[29] X. Massaneda, P.J. Thomas, Sampling sets for the Nevanlinna class, Rev. Mat. Iberoamericana 24 (2008), no. 1, 353-385. · Zbl 1160.30020
[30] John E. McCarthy, Topologies on the Smirnov class. J. Funct. Anal. 104 (1992), no. 1, 229-241. · Zbl 0762.46055
[31] R. Mortini, Zur Idealstruktur von Unterringen der Nevanlinna-Klasse N. (German) [On the ideal structure of subrings of Nevanlinna class N]. Publ. du CUL, Séminaire de Math. de Luxembourg, Travaux mathématiques I (1989), 81-91. · Zbl 0693.30027
[32] R. Mortini, Generating sets for ideals of finite type in H^∞. Bull. Sci. Math. 136 (2012), no. 6, 687-708. · Zbl 1257.46023
[33] R. Mortini, Finitely generated closed ideals in H^∞. Arch. Math. (Basel) 45 (1985), no. 6, 546-548. · Zbl 0557.46032
[34] A.G. Naftalevič, On interpolation by functions of bounded characteristic (Russian), Vilniaus Valst. Univ. Mokslų Darbai. Mat. Fiz. Chem. Mokslų Ser. 5 (1956), 5-27.
[35] A. Nicolau, J. Pau, P.J. Thomas, Smallness sets for bounded holomorphic functions, J. Anal. Math. 82 (2000), 119-148. · Zbl 0974.30026
[36] A. Nicolau, P.J. Thomas, Invertibility Threshold for Nevanlinna Quotient Algebras, arXiv:1904.06908 · Zbl 1511.30019
[37] N.K. Nikolski, Treatise on the shift operator. Spectral function theory. With an appendix by S.V. Huruš£ev [S.V. Khrushchev] and V.V. Peller. Translated from the Russian by Jaak Peetre. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 273. Springer-Verlag, Berlin, 1986. · Zbl 0587.47036
[38] N.K. Nikolski [Nikol’skiĭ], Operators, functions, and systems: an easy reading. Vol. 1, Hardy, Hankel, and Toeplitz; Vol.2, Model Operators and Systems, Mathematical Surveys and Monographs, 92 and 93. American Mathematical Society, Providence, RI, 2002.
[39] N. Nikolski, V. Vasyunin, Invertibility threshold for the H^∞-trace algebra and the efficient inversion of matrices, Algebra i Analiz 23 (1) (2011), 87-110. · Zbl 1254.47039
[40] J. Ortega-Cerdà, K. Seip, Harmonic measure and Uniform densities, Indiana Univ. Math. J. 53 (2004), no. 3, 905-923. · Zbl 1057.30022
[41] J.V. Roberts, M. Stoll, Prime and principal ideals in the algebra N^+. Arch. Math. (Basel) 27 (1976), 387-393. · Zbl 0329.46025
[42] M. Rosenblum, J. Rovnyak, Hardy classes and operator theory, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1985. · Zbl 0586.47020
[43] K. Seip, Beurling type density theorems in the unit disk, Invent. Math. 113 (1993), 21-39. · Zbl 0789.30025
[44] J.H. Shapiro, A.L. Shields, Unusual topological properties of the Nevanlinna class. Amer. J. Math. 97 (1975), no. 4, 915-936. · Zbl 0323.30033
[45] P.J. Thomas, Sampling sets for Hardy spaces of the disk, Proc. Amer. Math.Soc. 126 (1998), 2927-2932. · Zbl 0906.30032
[46] V.A. Tolokonnikov, Interpolating Blaschke products and ideals of the algebra H^∞. (Russian) Investigations on linear operators and the theory of functions, XII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 126 (1983), 196-201. · Zbl 0518.46043
[47] V.A. Tolokonnikov, Blaschke products with the Carleson-Newman condition, and ideals of the algebra H^∞. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149 (1986), Issled. Linein. Teor. Funktsii. XV, 93-102, 188; translation in J. Soviet Math. 42 (1988), no. 2, 1603-1610. · Zbl 0654.30026
[48] S. Treil, The stable rank of the algebra &H^∞ equals 1, J. Funct. Anal. 109 (1992), no. 1, 130-154. · Zbl 0784.46037
[49] S. Treil, Estimates in the corona theorem and ideals of &H^∞: a problem of T. Wolff. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87 (2002), 481-495. · Zbl 1044.46043
[50] V.I. Vasyunin, Unconditionally convergent spectral decompositions and interpolation problems (Russian). Spectral theory of functions and operators. Trudy Mat. Inst. Steklov. 130 (1978), 5-49, 223. · Zbl 0438.47039
[51] V.I. Vasyunin, Traces of bounded analytic functions on finite unions of Carleson sets (Russian). Investigations on linear operators and the theory of functions, XII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 126 (1983), 31-34. · Zbl 0533.30033
[52] V.I. Vasyunin, Characterization of finite unions of Carleson sets in terms of solvability of interpolation problems (Russian). Investigations on linear operators and the theory of functions, XIII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 135 (1984), 31-35. · Zbl 0545.41005
[53] N. Yanagihara, Interpolation theorems for the class N^+, Illinois J. Math. 18 (1974), 427-435. · Zbl 0296.30028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.