×

\(\mathbb G\)-reflectors: Analogues of Householder transformations in scalar product spaces. (English) Zbl 1059.65040

An elementary reflector (also called Householder transformation) is a unitary matrix of the form \(H = I-2vv^\star\), where \(I\) is the identity matrix and \(v\) is some vector with \(\| v\| _2=1\). For any two vectors \(p\) and \(q\) with \(\| p\| _2 = \| q\| _2\) there exists such a transformation which maps \(p\) to \(q\). This mapping property makes elementary reflectors an important tool for developing algorithms in numerical linear algebra.
Structure-preserving algorithms often rely on variants of elementary reflectors which yield, e.g., complex orthogonal, symplectic or pseudo-orthogonal transformations. This paper provides a general and comprehensive framework for such variants. If \(\langle \cdot, \cdot\rangle\) is a bilinear form (\(\langle \cdot, \cdot\rangle = x^T My\) for some matrix \(M\)) or a sesquilinear form (\(\langle \cdot, \cdot\rangle = x^\star My\) for some matrix \(M\)) then the automorphism group \(\mathbb G\) associated with \(\langle \cdot, \cdot\rangle\) consists of all matrices \(G\) satisfying \(\langle G x, Gy\rangle = \langle x, y\rangle\). A \(\mathbb G\)-reflector is defined as a transformation \(G = I + uv^\star\) with \(G \in \mathbb G\). It is shown that such a \(G\) can always be written in the form \(G = I + \beta uu^T\) (bilinear \(\langle \cdot, \cdot\rangle\)) or \(G = I + \beta uu^\star\) (sesquilinear \(\langle \cdot, \cdot\rangle\)), provided that \(M\) is nonsingular. The usefulness of \(\mathbb G\)-reflectors for dealing with structured matrices stems from the fact that the transformation \(A\rightarrow G^{-1} A G\) not only preserves the automorphism group but also the Jordan and Lie algebras associated with \(\langle \cdot, \cdot\rangle\). For example, if \(\langle x,y \rangle = x^\star y\) then \(\mathbb G\) consists of unitary matrices and the transformation above preserves Hermitian as well as skew-Hermitian matrices.
This paper gives geometric interpretations of \(G\) depending on the question whether \(u\) is isotropic (\(\langle u, u \rangle = 0\)). Isotropic vectors also limit the mapping capabilities of \(G\); a non-isotropic vector can never be mapped to an isotropic vector; and vice versa. On the other hand, for (skew-)symmetric bilinear and sesquilinear forms, this paper shows that there always exists a unique \(\mathbb G\)-reflector \(G\) that maps \(p\) to \(q\) if \(\langle p,p \rangle = \langle q,q \rangle\) and \(\langle q-p,p\rangle \not= 0\). Various formulas for computing and representing \(G\) are given. These formulas also provide insight into the construction of \(G\) for the standard case \(\langle x,y \rangle = x^\star y\).
This paper is a very useful guide for developing and understanding structure-preserving algorithms.

MSC:

65F30 Other matrix algorithms (MSC2010)
15A04 Linear transformations, semilinear transformations
15B57 Hermitian, skew-Hermitian, and related matrices
15A63 Quadratic and bilinear forms, inner products

Software:

LAPACK; nag; mctoolbox; CLARFG; NAG
Full Text: DOI

References:

[1] Ammar, G.; Mehl, C.; Mehrmann, V., Schur-like forms for matrix Lie groups, Lie algebras and Jordan algebras, Linear Algebra Appl., 287, 11-39 (1999) · Zbl 0959.17002
[2] E. Anderson, Z. Bai, C.H. Bischof, S. Blackford, J.W. Demmel, J.J. Dongarra, J.J. Du Croz, A. Greenbaum, S.J. Hammarling, A. McKenney, D.C. Sorensen, LAPACK Users’ Guide, Society for Industrial and Applied Mathematics, third ed., Philadelphia, PA, USA, 1999; E. Anderson, Z. Bai, C.H. Bischof, S. Blackford, J.W. Demmel, J.J. Dongarra, J.J. Du Croz, A. Greenbaum, S.J. Hammarling, A. McKenney, D.C. Sorensen, LAPACK Users’ Guide, Society for Industrial and Applied Mathematics, third ed., Philadelphia, PA, USA, 1999 · Zbl 0934.65030
[3] Artin, E., Geometric Algebra, (Interscience Tracts in Pure and Applied Mathematics (1957), Interscience Publishers: Interscience Publishers New York) · Zbl 0077.02101
[4] Bindel, D.; Demmel, J.; Kahan, W.; Marques, O., On computing Givens rotations reliably and efficiently, ACM Trans. Math. Software, 28, 2, 206-238 (2002) · Zbl 1072.65048
[5] Bojanczyk, A. W.; Qiao, S.; Steinhardt, A. O., Unifying unitary and hyperbolic transformations, Linear Algebra Appl., 316, 183-197 (2000) · Zbl 0970.65042
[6] Cartan, E., Leçons sur la Théorie des Spineurs, (Actualites Scientifiques et Industrielles, no. 701, vol. II (1938), Hermann: Hermann Paris) · JFM 64.1382.04
[7] Dieudonné, J. A., La Géométrie des Groupes Classiques, (Ergebnisse der Mathematik und ihrer Grenzgebiete, third ed., vol. 5 (1971), Springer-Verlag: Springer-Verlag New York) · Zbl 0067.26104
[8] Fulton, W.; Harris, J., Representation theory: a first course, (Graduate Texts in Mathematics (1991), Springer-Verlag: Springer-Verlag New York) · Zbl 0744.22001
[9] Gohberg, I.; Lancaster, P.; Rodman, L., Matrices and indefinite scalar products, (Operator Theory: Advances and Applications, vol. 8 (1983), Birkhäuser: Birkhäuser Basel, Switzerland) · Zbl 0513.15006
[10] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, MD · Zbl 0865.65009
[11] Gray, A., Modern Differential Geometry of Curves and Surfaces (1993), CRC Press: CRC Press Boca Raton, FL · Zbl 0795.53001
[12] Higham, N. J., Accuracy and Stability of Numerical Algorithms (2002), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 1011.65010
[13] Hilbert, D.; Cohn-Vossen, S., Geometry and the Imagination (1952), Chelsea Publishing Company: Chelsea Publishing Company New York · Zbl 0047.38806
[14] Householder, A. S., The Theory of Matrices in Numerical Analysis (1964), Blaisdell: Blaisdell New York, Reprinted by Dover, New York, 1975 · Zbl 0161.12101
[15] Jacobson, N., Basic Algebra. I (1974), W. H. Freeman and Company: W. H. Freeman and Company San Francisco · Zbl 0284.16001
[16] Lancaster, P.; Rodman, L., Algebraic Riccati Equations (1995), Oxford University Press: Oxford University Press Oxford · Zbl 0836.15005
[17] Lang, S., Algebra (1993), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0848.13001
[18] Laurie, D., Complex analogue of householder reflections, NA Digest, 97, 18, 22 (1997), Electronic mail magazine: na.help@na-net.ornl.gov
[19] Lehoucq, R. B., The computation of elementary unitary matrices, ACM Trans. Math. Software, 22, 4, 393-400 (1996) · Zbl 0884.65039
[20] D.S. Mackey, N. Mackey, On the determinant of symplectic matrices. Numerical Analysis Report no. 422, Manchester Centre for Computational Mathematics, Manchester, England, 2003; D.S. Mackey, N. Mackey, On the determinant of symplectic matrices. Numerical Analysis Report no. 422, Manchester Centre for Computational Mathematics, Manchester, England, 2003 · Zbl 1027.15013
[21] D.S. Mackey, N. Mackey, F. Tisseur, Structured factorizations in scalar product spaces, Numerical Analysis Report no. 432, Manchester Centre for Computational Mathematics, Manchester, England; D.S. Mackey, N. Mackey, F. Tisseur, Structured factorizations in scalar product spaces, Numerical Analysis Report no. 432, Manchester Centre for Computational Mathematics, Manchester, England · Zbl 1098.15005
[22] D.S. Mackey, N. Mackey, F. Tisseur, Structured mapping problems for automorphism groups, Lie algebras and Jordan algebras associated with scalar products, Numerical Analysis Report no. 421, Manchester Centre for Computational Mathematics, Manchester, England, 2003; D.S. Mackey, N. Mackey, F. Tisseur, Structured mapping problems for automorphism groups, Lie algebras and Jordan algebras associated with scalar products, Numerical Analysis Report no. 421, Manchester Centre for Computational Mathematics, Manchester, England, 2003 · Zbl 1155.15004
[23] D.S. Mackey, N. Mackey, F. Tisseur, Structured tools for structured matrices, Numerical Analysis Report no. 419, Manchester Centre for Computational Mathematics, Manchester, England, Electron. J. Linear Algebra 10 (2003) 106-145; D.S. Mackey, N. Mackey, F. Tisseur, Structured tools for structured matrices, Numerical Analysis Report no. 419, Manchester Centre for Computational Mathematics, Manchester, England, Electron. J. Linear Algebra 10 (2003) 106-145 · Zbl 1027.15013
[24] V. Mehrmann, Der SR-algorithmus zur Bestimmung der Eigenwerte einer Matrix, Diplomarbeit, Universität Bielefeld, 1979; V. Mehrmann, Der SR-algorithmus zur Bestimmung der Eigenwerte einer Matrix, Diplomarbeit, Universität Bielefeld, 1979
[25] NAG, NAG Fortran Library Manual, Mark 16, Numerical Algorithms Group, Ltd., Oxford, UK, 1993; NAG, NAG Fortran Library Manual, Mark 16, Numerical Algorithms Group, Ltd., Oxford, UK, 1993
[26] B.N. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1998. Unabridged, amended version of book first published by Prentice-Hall in 1980; B.N. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1998. Unabridged, amended version of book first published by Prentice-Hall in 1980 · Zbl 0431.65017
[27] Rader, C. M.; Steinhardt, A. O., Hyperbolic Householder transformations, IEEE Trans. Acoust. Speech Signal Processing, ASSP-34, 6, 1589-1602 (1986) · Zbl 0629.93063
[28] Scherk, P., On the decomposition of orthogonalities into symmetries, Proc. Am. Math. Soc., 1, 4, 481-491 (1950) · Zbl 0039.01004
[29] Shaw, R., (Linear Algebra and Group Representations, vol. I (1982), Academic Press Inc. [Harcourt Brace Jovanovich Publishers]: Academic Press Inc. [Harcourt Brace Jovanovich Publishers] London) · Zbl 0495.15001
[30] Stewart, M.; Stewart, G. W., On hyperbolic triangularization: stability and pivoting, SIAM J. Matrix Anal. Appl., 19, 4, 847-860 (1998) · Zbl 0948.65027
[31] Turnbull, H. W.; Aitken, A. C., An Introduction to the Theory of Canonical Matrices (1932), Blackie & Son Limited: Blackie & Son Limited Glasgow · Zbl 0005.19303
[32] Uhlig, F., Constructive ways for generating (generalized) real orthogonal matrices as products of (generalized) symmetries, Linear Algebra Appl., 332/334, 459-467 (2001) · Zbl 0982.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.