×

Goodness-of-fit tests based on a new characterization of the exponential distribution. (English) Zbl 1008.62043

Summary: The characteristic function \(\psi(t)=E[exp(itX)]\) of a random variable \(X\) with exponential density \(\theta^{-1}exp(-x\theta^{-1}),\;x\geq 0\), satisfies the equation \(\nu(t)-\theta t u(t)=0\), \(t\in\mathbb{R}\), where \(u(t)\) and \(\nu(t)\) denote the real and the imaginary part of \(\psi(t)\), respectively.
We study a new class of consistent tests for exponentiality based on a suitably weighted integral of \([\nu_n(t)-\hat\theta_n tu_n(t)]^2\), where \(\hat\theta_n\) is the maximum-likelihood estimate of \(\theta\), and \(u_n\) and \(\nu_n\) denote the empirical counterparts of \(u(t)\) and \(\nu(t)\), respectively. As the decay of the weight function tends to infinity, the test statistic approaches the square of a linear combination of the first two nonzero components of Neyman’s smooth test for exponentiality. The new tests are compared with other omnibus tests for exponentiality.

MSC:

62G10 Nonparametric hypothesis testing
62E10 Characterization and structure theory of statistical distributions
Full Text: DOI

References:

[1] Azlarov T.A., Characterization Problems Associated with the Exponential Distribution (1986) · Zbl 0624.62020 · doi:10.1007/978-1-4612-4956-6
[2] Galambos J., Lecture Notes in Mathematics 675 (1978)
[3] Johnson N.L., Continuous Univariate Distributions 1 (1994) · Zbl 0811.62001
[4] DOI: 10.1080/03610929008830292 · doi:10.1080/03610929008830292
[5] D’Agostino R., Goodness-of-fit Techniques (1986)
[6] Doksum K.A., Handbook of Statistics 4 pp 579– (1984)
[7] DOI: 10.1080/03610928408828782 · Zbl 0552.62024 · doi:10.1080/03610928408828782
[8] DOI: 10.1111/1467-9868.00200 · Zbl 0924.62039 · doi:10.1111/1467-9868.00200
[9] DOI: 10.2307/2670173 · Zbl 1072.62647 · doi:10.2307/2670173
[10] DOI: 10.1016/S0378-3758(97)00047-5 · Zbl 0914.62030 · doi:10.1016/S0378-3758(97)00047-5
[11] Grzegorzewski P., Commun. Statist.—Th. Meth. 26 pp 1183– (1999)
[12] DOI: 10.1007/BF02926105 · Zbl 0948.62030 · doi:10.1007/BF02926105
[13] El Aroui M.-A., C.R. Acad. Sci. Paris Ser. I 323 pp 1069– (1996)
[14] Gupta R.D., J. Statist. Plann. Inference 63 pp 203– (1997) · Zbl 0884.62056 · doi:10.1016/S0378-3758(97)00016-5
[15] DOI: 10.1080/0020739970280408 · Zbl 0892.60055 · doi:10.1080/0020739970280408
[16] Henze N., Mathem. Meth. Statist. 10 pp 232– (2001)
[17] DOI: 10.1016/S0167-7152(99)00157-1 · Zbl 0977.62103 · doi:10.1016/S0167-7152(99)00157-1
[18] Klefsjoe B., Arab. J. Math. Sci. 2 pp 129– (1996)
[19] DOI: 10.1081/STA-100002088 · Zbl 1009.62523 · doi:10.1081/STA-100002088
[20] DOI: 10.1080/10485259608832660 · Zbl 0866.62021 · doi:10.1080/10485259608832660
[21] DOI: 10.1080/03610920008832475 · Zbl 0956.62097 · doi:10.1080/03610920008832475
[22] Fedoryuk M.V., Analysis I, Encyclopedia of Mathematical Sciences 13 pp 193– (1989)
[23] Meintanis S.G., Characterizations of the Exponential Distribution Based on Certain Properties of its Characteristic Function with Applications (2001)
[24] DOI: 10.1007/BF00053372 · Zbl 0760.62040 · doi:10.1007/BF00053372
[25] Rayner J.C.W., Smooth Tests of Goodness of Fit (1989) · Zbl 0731.62064
[26] DOI: 10.1006/jmva.1997.1684 · Zbl 0874.62043 · doi:10.1006/jmva.1997.1684
[27] DOI: 10.1111/1467-842X.00117 · doi:10.1111/1467-842X.00117
[28] Henze N., Commun. Statist.—Th. Meth. 22 pp 115– (1993) · Zbl 0777.62047 · doi:10.1080/03610929308831009
[29] Epps T.W., J. Roy. Statist. Soc. B 48 pp 206– (1986)
[30] DOI: 10.1214/aos/1176343411 · Zbl 0325.62014 · doi:10.1214/aos/1176343411
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.