×

Three-node assumed strain Mindlin plate finite elements. (English) Zbl 1543.74094

Two new three-node finite elements T3-LSC and T3-LSI for Mindlin plate theory are presented. These finite elements are based on the two-node Timoshenko beam element with cubic interpolation. The presented elements are developed by generalizing the constant shear strain expression of the Timoshenko beam element along each of the element side. For the T3-LSC element, the rotational fields are such that the whole formulation is kinematically consistent at every point inside the element region, whereas for the T3-LSI element, the rotational fields are interpolated independently. Results from the numerical examples support the convergence of methods connected with these finite elements. The results also show that both elements are completely free of shear locking, which makes them suitable for the analysis of very thin to thick plate cases. The presented finite elements are simple in formulation, computationally efficient, robust and effective, thereby suitable for practical application.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates

Software:

FEAP; FEAPpv
Full Text: DOI

References:

[1] Bathe, K.J.: Finite Element Procedures, 2nd ed. Klaus‐Jürgen Bathe, Watertown, MA (2014)
[2] Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 7th ed. Elsevier, Oxford, UK (2013) · Zbl 1307.74005
[3] Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola, NY (2000) · Zbl 1191.74002
[4] Cen, S., Shang, Y.: Developments of Mindlin-Reissner plate elements. Math. Probl. Eng.2015, 1-12 (2015). https://doi.org/10.1155/2015/456740 · Zbl 1394.74099 · doi:10.1155/2015/456740
[5] Batoz, J.L., Antaluca, E., Katili, I.: On the formulation and evaluation of old and new efficient low order triangular plate bending elements with shear effects. Comput. Mech.68(1), 69-96 (2021). https://doi.org/10.1007/s00466‐021‐02020‐6 · Zbl 1483.74087 · doi:10.1007/s00466‐021‐02020‐6
[6] Hughes, T.J.R., Tezduyar, T.E.: Finite elements based upon mindlin plate theory with particular reference to the four‐node bilinear isoparametric element. J. Appl. Mech.48(3), 587-596 (1981). https://doi.org/10.1115/1.3157679 · Zbl 0459.73069 · doi:10.1115/1.3157679
[7] Macneal, R.H.: Derivation of element stiffness matrices by assumed strain distributions. Nucl. Eng. Des.70(1), 3-12 (1982). https://doi.org/10.1016/0029‐5493(82)90262‐X · doi:10.1016/0029‐5493(82)90262‐X
[8] Zhongnian, X.: A simple and efficient triangular finite element for plate bending. Acta Mech. Sin.2(2), 185-192 (1986). https://doi.org/10.1007/BF02485859 · Zbl 0605.73075 · doi:10.1007/BF02485859
[9] Zienkiewicz, O.C., Xu, Z., Zeng, L.F., Samuelsson, A., Wiberg, N.E.: Linked interpolation for Reissner-Mindlin plate elements: part I - a simple quadrilateral. Int. J. Numer. Methods Eng.36(18), 3043-3056 (1993). https://doi.org/10.1002/nme.1620361802 · Zbl 0780.73090 · doi:10.1002/nme.1620361802
[10] Taylor, R.L., Auricchio, F.: Linked interpolation for Reissner-Mindlin plate elements: part II - a simple triangle. Int. J. Numer. Methods Eng.36(18), 3057-3066 (1993). https://doi.org/10.1002/nme.1620361803 · Zbl 0781.73071 · doi:10.1002/nme.1620361803
[11] Ribarić, D., Jelenić, G.: Higher‐order linked interpolation in quadrilateral thick plate finite elements. Finite Elements Anal. Des.51, 67-80 (2012). https://doi.org/10.1016/j.finel.2011.10.003 · doi:10.1016/j.finel.2011.10.003
[12] Ribarić, D., Jelenić, G.: Higher‐order linked interpolation in triangular thick plate finite elements. Eng. Comput.31(1), 69-109 (2014). https://doi.org/10.1108/EC-03-2012-0056 · doi:10.1108/EC-03-2012-0056
[13] Nguyen, C.U., Batoz, J.L., Ibrahimbegovic, A.: Notable highlights on locking‐free techniques of Reissner-Mindlin plate finite elements in elastostatics. Coupled Syst. Mech.10(3), 229-246 (2021). https://doi.org/10.12989/csm.2021.10.3.229 · doi:10.12989/csm.2021.10.3.229
[14] Auricchio, F., Taylor, R.L.: A triangular thick plate finite element with an exact thin limit. Finite Elements Anal. Des.19(1-2), 57-68 (1995). https://doi.org/10.1016/0168‐874X(94)00057‐M · Zbl 0875.73290 · doi:10.1016/0168‐874X(94)00057‐M
[15] Soh, A.K., Long, Z.F., Cen, S.: A new nine DOF triangular element for analysis of thick and thin plates. Comput. Mech.24(5), 408-417 (1999). https://doi.org/10.1007/s004660050461 · Zbl 0977.74068 · doi:10.1007/s004660050461
[16] Wanji, C., Cheung, Y.K.: Refined 9‐Dof triangular Mindlin plate elements. Int. J. Numer. Methods Eng.51(11), 1259-1281 (2001). https://doi.org/10.1002/nme.196 · Zbl 1065.74606 · doi:10.1002/nme.196
[17] Huang, J.B., Cen, S., Shang, Y., Li, C.F.: A new triangular hybrid displacement function element for static and free vibration analyses of Mindlin-Reissner plate. Latin Am. J. Solids Struct.14(5), 765-804 (2017). https://doi.org/10.1590/1679‐78253036 · doi:10.1590/1679‐78253036
[18] Auricchio, F., Taylor, R.L.: A shear deformable plate element with an exact thin limit. Comput. Meth. Appl. Mech. Eng.118(3-4), 393-412 (1994). https://doi.org/10.1016/0045‐7825(94)90009‐4 · Zbl 0849.73063 · doi:10.1016/0045‐7825(94)90009‐4
[19] Soh, A.K., Cen, S., Long, Y.Q., Long, Z.F.: A new twelve DOF quadrilateral element for analysis of thick and thin plates. Eur. J. Mech. A Solids20(2), 299-326 (2001). https://doi.org/10.1016/S0997‐7538(00)01129‐3 · Zbl 1047.74068 · doi:10.1016/S0997‐7538(00)01129‐3
[20] Wanji, C., Cheung, Y.K.: Refined quadrilateral element based on Mindlin/Reissner plate theory. Int. J. Numer. Methods Eng.47(1-3), 605-627 (2000). https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3 · Zbl 0970.74072 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
[21] Cen, S., Shang, Y., Li, C.F., Li, H.G.: Hybrid displacement function element method: a simple hybrid‐Trefftz stress element method for analysis of Mindlin-Reissner plate. Int. J. Numer. Methods Eng.98(3), 203-234 (2014). https://doi.org/10.1002/nme.4632 · Zbl 1352.74335 · doi:10.1002/nme.4632
[22] Ribaric, D.: Problem‐dependent cubic linked interpolation for Mindlin plate four‐node quadrilateral finite elements. Struct. Eng. Mech.59(6), 1071-1094 (2016). https://doi.org/10.12989/sem.2016.59.6.1071 · doi:10.12989/sem.2016.59.6.1071
[23] Papa Dukić, E., Jelenić, G.: Exact solution of 3D Timoshenko beam problem: problem‐dependent formulation. Arch. Appl. Mech.84(3), 375-384 (2014). https://doi.org/10.1007/s00419‐013‐0805‐y · Zbl 1351.74050 · doi:10.1007/s00419‐013‐0805‐y
[24] Taylor, R.L.: Finite Element Analysis Program (FEAP). http://projects.ce.berkeley.edu/feap/ (2021)
[25] Batoz, J.L., Bathe, K.J., Ho, L.W.: A study of three‐node triangular plate bending elements. Int. J. Numer. Methods Eng.15(12), 1771-1812 (1980). https://doi.org/10.1002/nme.1620151205 · Zbl 0463.73071 · doi:10.1002/nme.1620151205
[26] Chen, W., Wang, J., Zhao, J.: Functions for patch test in finite element analysis of the Mindlin plate and the thin cylindrical shell. Sci. China Ser. G: Phys., Mech. Astron.52(5), 762-767 (2009). https://doi.org/10.1007/s11433‐009‐0097‐y · doi:10.1007/s11433‐009‐0097‐y
[27] Razzaque, A.: Program for triangular bending elements with derivative smoothing. Int. J. Numer. Methods Eng.6, 333-343 (1973). https://doi.org/10.1002/nme.1620060305 · doi:10.1002/nme.1620060305
[28] Morley, L.S.D.: Skew Plates and Structures. The Macmillan Company, New York, NY (1963) · Zbl 0124.17704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.