×

The application of numerical topological invariants in simulations of knotted rings: a comprehensive Monte Carlo approach. (English) Zbl 1471.82037

Summary: In this work, a general Monte Carlo framework is proposed for applying numerical knot invariants in simulations of systems containing knotted one-dimensional ring-shaped objects like polymers and vortex lines in fluids, superfluids or other quantum liquids. A general prescription for smoothing the sharp corners appearing in discrete knots consisting of segments joined together is provided. Smoothing is very important for the correct evaluation of numerical knot invariants.
A discrete version of framing is adopted in order to eliminate singularities that are possibly arising when computing the invariants. The presented algorithms for smoothing, eliminating potentially dangerous singularities and speeding up the calculations are quite general and can be applied to any discrete knot defined off- or on-lattice.
This is one of the first attempts to use numerical knot invariants in order to avoid potential topology breakings during the sampling process taking place in computer simulations, in which millions of knot conformations are randomly generated. As an application, the energy domain of knotted polymer rings subjected to short-range interactions is studied using the so-called Vassiliev knot invariant of degree 2.

MSC:

82M31 Monte Carlo methods applied to problems in statistical mechanics
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
65C05 Monte Carlo methods
82D50 Statistical mechanics of superfluids
82D60 Statistical mechanics of polymers

Software:

KymoKnot
Full Text: DOI

References:

[1] Wasserman, S. A. and Cozzarelli, N. R., Biochemical topology: Applications to DNA recombination and replication, Science232 (1986) 951-960.
[2] Delbrück, M. and Fuller, F. Brock, Knotting problems in biology, with an appendix entitled “A measure of entanglement”, in Mathematical Problems in the Biological Sciences, , Vol. 14 (American Mathematical Society, 1962), pp. 55-68.
[3] Bowick, M. J., Chander, L., Schiff, E. A. and Srivastava, A. M., The cosmological Kibble mechanism in the laboratory: String formation in liquid crystals, Science263 (1994) 943-945.
[4] Bäuerle, C., Bunkov, Yu. M., Fisher, S. N., Godfrin, H. and Pickett, G. R., Laboratory simulation of cosmic string formation in the early Universe using superfluid^3He, Nature382 (1996) 332-334.
[5] Ruutu, V. M. H., Eltsov, V. B., Gill, A. J., Kibble, T. W. B., Krusius, M., Makhlin, Yu. G., Placais, B., Volovik, G. E. and Xu, W., Vortex formation in neutron-irradiated superfluid^3He as an analogue of cosmological defect formation, Nature382 (1996) 334-336.
[6] Araki, T. and Tanaka, H., Colloidal aggregation in a nematic liquid crystal: Topological arrest of particles by a single-stroke disclination line, Phys. Rev. Lett.97 (2006) 127801-4.
[7] Tkalec, U., Ravnik, M., Čopar, S., Žumer, S. and Muševič, I., Reconfigurable knots and links in chiral nematic colloids, Science333 (2011) 62-65. · Zbl 1355.82069
[8] Žumer, S., Modeling of constrained nematic order: From defects to colloidal structures, in Proc. 21st International Liquid Crystal Conference, Keystone, Colorado, USA, , 2-7 July 2006 (Kinsley & Associates, Littletown, 2006).
[9] Alexander, J. W., Topological invariants of knots and links, Trans. Amer. Math. Soc.30 (1928) 275-306. · JFM 54.0603.03
[10] Kauffman, L. H., Knots and Physics, 2nd edn. (World Scientific, Singapore, 2001). · Zbl 1057.57001
[11] Freyd, P., Yetter, D., Hoste, J., Lickorish, W. B. R., Millet, K. and Ocneanu, A., A new polynomial invariant of knots and links, Bull. Amer. Math. Soc.12 (1985) 239-246. · Zbl 0572.57002
[12] Kontsevich, M., Vassiliev’s knot invariants, Adv. in Sov. Math.16(2) (1993) 137-150. · Zbl 0839.57006
[13] D. Bar-Natan, On the Vassiliev knot invariants, Harvard preprint (1992). · Zbl 0898.57001
[14] Bar-Natan, D., On the Vassiliev knot invariants, Topology34 (1995) 423-472. · Zbl 0898.57001
[15] Labastida, J. M. F. and Ramallo, A. V., Operator formalism for Chern-Simons theories, Phys. Lett. B227 (1989) 92-102.
[16] Guadagnini, E., Martellini, M. and Mintchev, M., Braids and quantum group symmetry in Chern-Simons theory, Nucl. Phys. B336 (1990) 581-609. · Zbl 0722.57003
[17] M. Alvarez and J. M. F. Labastida, Nucl.Phys. B433 (1995) 555-596; Erratum, ibid.441 (1995) 403-404. · Zbl 1020.57500
[18] Vologodskii, A. V., Lukashin, A. V., Frank-Kamenetskii, M. D. and Anshelevich, V. V., The knot problem in statistical mechanics of polymer chains, Zh. Eksp. Teor. Fiz.66 (1974) 2153-2163.
[19] T. T. F. Nonweiler, The numerical evaluation of curvilinear integrals and areas defined by discrete data, Inter-university/research councils series (1972).
[20] Davis, P. and Rabinowitz, P., Methods of Numerical Integration, 2nd edn. (Academic Press, 1984). · Zbl 0537.65020
[21] Atkinson, K. and Venturino, E., Numerical evaluation of line integrals, Siam J. Numer. Anal.30 (1993) 882-888. · Zbl 0780.65011
[22] Perego, C. and Potestio, R., Computational methods in the study of self-entangled proteins: A critical appraisal, J. Phys. Condens. Matter31 (2019) 443001.
[23] Tubiana, L., Polles, G., Orlandini, E. and Michetti, C., KymoKnot: A web server and software package to identify and locate knots in trajectories of linear or circular polymers, Eur. Phys. J. E41 (2018) No. 72.
[24] Micheletti, C., Marenduzzo, D., Orlandini, E. and Sumners, D. W., Knotting of random ring polymers in confined spaces, J. Chem. Phys.124(6) (2006) 64903-64903.
[25] Baiesi, M., Orlandini, E. and Stella, A. L., Ranking knots of random, globular polymer rings, Phys. Rev. Lett.99 (2007) 058301.
[26] Baiesi, M., Orlandini, E. and Whittington, S. G., Interplay between writhe and knotting for swollen and compact polymers, J. Chem. Phys.131(15) (2009) 154902.
[27] Knott, G. D., Interpolating Cubic Splines (Birkhäuser, 2000). · Zbl 1057.41001
[28] Zhao, Y. and Ferrari, F., A study of polymer knots using a simple knot invariant consisting of multiple contour integrals, JSTAT2013 (2013) P10010. · Zbl 1456.82964
[29] Dunin-Barkowski, P., Sleptsov, A. and Smirnov, A., Kontsevich integral for knots and Vassiliev invariants, Int. J. Mod. Phys. A28 (2013) 1330025-62. · Zbl 1272.81179
[30] Davis, P. J. and Rabinowitz, P., Methods of Numerical Integration (Academic Press, 1984). · Zbl 0537.65020
[31] Madras, N., Orlitsky, A. and Sepp, L. A., Monte Carlo generation of self-avoiding walks with fixed endpoints and fixed length, J. Stat. Phys.38 (1990) 159-183.
[32] Lesh, N., Mitzenmacher, M. and Whitesides, S., A complete and effective move set for simplified protein folding, in Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology (RECOMB-03), Berlin, Germany, (2003), pp. 188-195.
[33] de Carvalho, C. Aragão, Caracciolo, S. and Fröhlich, J., Polymers and g \(|\phi |^4\) theory in four dimensions, Nucl. Phys. B215 (1983) 209-248.
[34] Berg, B. and Foerster, D., Random paths and random surfaces on a digital computer, Phys. Lett. B106 (1981) 323-326.
[35] Witten, E., Quantum field theory and the Jones polynomial, Comm. Math. Phys.121 (1989) 351-399. · Zbl 0667.57005
[36] Cattaneo, A. S., Cotta-Ramusino, P. and Martellini, M., Three-dimensional BF theories and the Alexander-Conway invariant of knots, Nucl. Phys. B436(1-2) (1995) 355-382. · Zbl 1020.81701
[37] Polyak, M. and Viro, O., On the Casson knot invariant, J. Knot Theory Ramifications10 (2001) 711-738. · Zbl 0997.57021
[38] Ferrari, F., A new strategy to microscopic modeling of topological entanglement in polymers based on field theory, Nucl. Phys.948 (2019) 114778. · Zbl 1435.82048
[39] Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3rd edn. (World Scientific Publishing, Singapore, 2003). · Zbl 1108.81001
[40] Qu, L. and He, D., Solving numerical integration by particle swarm optimization, in Proc. ICICA 2010, Part II (Springer Verlag, 2010), pp. 228-235.
[41] Koniaris, K. and Muthukumar, M., Knottedness in ring polymers, Phys. Rev. Lett.66 (1991) 2211-2214.
[42] Taylor, W. R. and Aszódi, A., Protein Geometry, Classification, Topology and Symmetry: A Computational Analysis of Structure (Taylor & Francis Group, 2005). · Zbl 1111.92021
[43] Liu, L. F., Davis, J. L. and Calendar, R., Novel topologically knotted DNA from bacteriophage P4 capsids: Studies with DNA topoisomerases, Nucleic Acids Res.9 (1981) 3979-3989.
[44] Liu, L. F., Perkocha, L., Calendar, R. and Wang, J. C., Knotted DNA from bacteriophage capsids, Proc. Natl. Acad. Sci. USA78 (1981) 5498-5502.
[45] Arsuaga, J., Vazquez, M., Tigueros, S., Sumners, D. W. and Roca, J., Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids, Proc. Natl. Acad. Sci. USA99 (2002) 5373-5377.
[46] van Rensburg, E. J. and Whittington, S., The knot probability in lattice polygons, J. Phys. A Math. Gen.23 (1990) 3573-3590. · Zbl 0709.57001
[47] Metzler, R., Ambjörnsson, T., Hanke, A., Zhang, Y. and Levene, S., Single DNA conformations and biological function, J. Comput. Teor. Nanosci.4(1) (2007) 1-49.
[48] Kleckner, D., Kauffman, L. H. and Irvine, W. T. M., How superfluid vortex knots untie, Nature Phys.12 (2016) 650-655.
[49] Berger, M. A. and Asgari-Targhi, M., Self-organized braiding and the structure of coronal loops, Astrophys. J.705 (2009) 347-355.
[50] Stauch, T. and Dreuw, A., Knots “choke off” polymers upon stretching, Angew. Chem. (Int. Ed.)55(2) (2016) 811-814.
[51] Leigh, D. A., Pirvu, L. and Schaufelberger, F., Stereoselective synthesis of molecular square and granny knots, J. Am. Chem. Soc.141(14) (2019) 6054-6059.
[52] Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Clarendon Press, 1988).
[53] Rubinstein, M. and Colby, R. H., Polymer Physics (Oxford University Press, 2003).
[54] Wang, F. and Landau, D. P., Efficient, multiple-range random walk algorithm to calculate the density of states, Phys. Rev. Lett.86(10) (2001) 2050-2053.
[55] Vorontsov-Velyaminov, P. N., Volkov, N. A. and Yurchenko, A. A., Entropic sampling of simple polymer models within Wang-Landau algorithm, J. Phys. A: Math. Gen.37(5) (2004) 1573-1588. · Zbl 1053.82039
[56] Zhao, Y. and Ferrari, F., A numerical technique for studying topological effects on the thermal properties of knotted polymer rings, JSTAT J. Stat. Mech.2012 (2012) P11022.
[57] Ferrari, F., Topological field theories with non-semisimple gauge group of symmetry and engineering of topological invariants, in Current Topics in Quantum Field Theory Research, ed. Kovras, O. (Nova Science Publishers, 2006), pp. 63-104.
[58] Ferrari, F., Pia̧tek, M. R. and Zhao, Y., A topological field theory for Milnor’s triple linking number, J. Phys. A: Mathematical and Theoretical48 (2015) 275402; arXiv:1411.6429. · Zbl 1321.81056
[59] He, Y., Gu, X. F. and Qin, H., Automatic shape control of triangular B-splines of arbitrary topology, J. Comput. Sci. Technol.21 (2006) 232-237.
[60] C. Westenberger, Knots and links from random projections, preprint (2016); arXiv:1602.01484.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.