×

Exploring the Salerno model for rogue wave generation: a linear stability analysis beyond the DNLS and AL limits. (English) Zbl 1529.35467

Summary: This study presents a detailed analysis of the Salerno equation, which is a novel mathematical model for rogue wave generation. The model bridges the discrete nonlinear Schrödinger model and the integrable Ablowitz-Ladik model. The dispersion relation is calculated to understand the relationship between the wavenumber and system parameters, and the study examines very high values of nonlinearity parameters. It is found that unstable spirals exist in this regime, and their fluctuations are subject to more underlying modes. The Jacobian and monodromy matrix calculations reveal the existence of rogue waves, and it is observed that knowledge of how the free parameters may help to tune and control rogue wave generation. The study provides an inclusive and innovative solution for energy and finds application in the generation of oceanic waves, optical lattices, Bose-Einstein condensates, and photorefractive crystals. The results of the stabilitsis of rogue waves for the Salerno model, obtained using linearization techniques, the evaluation of perturbation equation, evaluation of fixed points of the monodromy matrix closest to the rogue wave initial condition, phase portraits of the linearized and perturbed equation, are discussed in detail. Overall, this study significantly contributes to the understanding of rogue waves in nonlinear systems and highlights the potential of the Salerno equation for practical applications, providing insights into their complex dynamics and control, which can be beneficial in designing experiments for practical applications.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35C08 Soliton solutions
78A50 Antennas, waveguides in optics and electromagnetic theory
35B35 Stability in context of PDEs
35B20 Perturbations in context of PDEs
Full Text: DOI

References:

[1] Akhmediev, N.; Ankiewicz, A.; Taki, M., Waves that appear from nowhere and disappear without a trace, Phys. Lett. A, 373, 6, 675-678 (2009) · Zbl 1227.76010 · doi:10.1016/j.physleta.2008.12.036
[2] Shats, M.; Punzmann, H.; Xia, H., Capillary rogue waves, Phys. Rev. Lett., 104, 10 (2010) · doi:10.1103/PhysRevLett.104.104503
[3] Ganshin, AN, Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium, Phys. Rev. Lett., 101, 6 (2008) · doi:10.1103/PhysRevLett.101.065303
[4] Solli, DR; Koonath, EP; Roper, SC, Optical rouge wave, Nature, 450, 1054-1057 (2007) · doi:10.1038/nature06402
[5] Salerno, M., Discrete model for DNA-promoter dynamics, Phys. Rev. A, 44, 8, 5292 (1991) · doi:10.1103/PhysRevA.44.5292
[6] Trombettoni, A.; Smerzi, A., Discrete solitons and breathers with dilute Bose-Einstein condensates, Phys. Rev. Lett., 86, 11, 2353 (2001) · doi:10.1103/PhysRevLett.86.2353
[7] Ablowitz, MJ; Ladik, JF, Nonlinear differential- difference equations, J. Math. Phys., 16, 3, 598-603 (1975) · Zbl 0296.34062 · doi:10.1063/1.522558
[8] Ablowitz, MJ; Ladik, JF, Nonlinear differential-difference equations and Fourier analysis, J. Math. Phys., 17, 6, 1011-1018 (1976) · Zbl 0322.42014 · doi:10.1063/1.523009
[9] Marquié, P.; Bilbault, JM; Remoissenet, M., Observation of nonlinear localized modes in an electrical lattice, Phys. Rev. E, 51, 6, 6127 (1995) · doi:10.1103/PhysRevE.51.6127
[10] Hennig, D.; Tsironis, GP, Wave transmission in nonlinear lattices, Phys. Rep., 307, 5-6, 333-432 (1999) · doi:10.1016/S0370-1573(98)00025-8
[11] Doktorov, EV; Matsuka, NP; Rothos, VM, Dynamics of the Ablowitz-Ladik soliton train, Phys. Rev. E, 69, 5 (2004) · Zbl 1101.35380 · doi:10.1103/PhysRevE.69.056607
[12] Ding, Q., On the gauge equivalent structure of the discrete nonlinear Schrödinger equation, Phys. Lett. A, 266, 2-3, 146-154 (2000) · Zbl 0949.37048 · doi:10.1016/S0375-9601(00)00027-X
[13] Kumar, P.; Raina, KK, Morphological and electro-optical responses of dichroic polymer dispersed liquid crystal films, Curr. Appl. Phys., 7, 6, 636-642 (2007) · doi:10.1016/j.cap.2007.01.004
[14] Li, M.; Shui, JJ; Xu, T., Generation mechanism of rogue waves for the discrete nonlinear Schrödinger equation, Appl. Math. Lett., 83, 110-115 (2018) · Zbl 1489.34029 · doi:10.1016/j.aml.2018.03.018
[15] Ankiewicz, A.; Akhmediev, N.; Soto-Crespo, JM, Discrete rogue waves of the Ablowitz-Ladik and Hirota equations, Phys. Rev. E, 82, 2 (2010) · doi:10.1103/PhysRevE.82.026602
[16] Peregrine, DH, Water waves, nonlinear Schrödinger equations and their solutions, Anziam J., 25, 1, 16-43 (1983) · Zbl 0526.76018
[17] Akhmediev, NN; Markovich Eleonskii, V.; Kulagin, NE, Exact first-order solutions of the nonlinear Schrödinger equation, Theor. Math. Phys., 72, 2, 809-818 (1987) · Zbl 0656.35135 · doi:10.1007/BF01017105
[18] Ma, YC, The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math., 60, 1, 43-58 (1979) · Zbl 0412.35028 · doi:10.1002/sapm197960143
[19] Gupta, M.; Malhotra, S.; Gupta, R., Numerical generation and investigation of rogue waves for discrete nonlinear Schrodinger equations (2022), J. Nonlinear Opt. Phys. Mater.
[20] Gupta, M., Malhotra, S., Gupta, R.: Rogue waves generation by using higher order rational solutions of discrete nonlinear Schrödinger equation. Proc. Mater. Today (2022)
[21] Maluckov, A., Extreme events in discrete nonlinear lattices, Phys. Rev. E, 79, 2 (2009) · doi:10.1103/PhysRevE.79.025601
[22] Gomez-Gardenes, J., Solitons in the Salerno model with competing nonlinearities, Phys. Rev. E, 73, 3 (2006) · doi:10.1103/PhysRevE.73.036608
[23] Mithun, T., Thermalization in the one-dimensional Salerno model lattice, Phys. Rev. E, 103, 3 (2021) · doi:10.1103/PhysRevE.103.032211
[24] Bludov, YV; Konotop, VV; Akhmediev, N., Rogue waves as spatial energy concentrators in arrays of nonlinear waveguides, Opt. Lett., 34, 19, 3015-3017 (2009) · doi:10.1364/OL.34.003015
[25] Hoffmann, C., Peregrine solitons and gradient catastrophes in discrete nonlinear Schrödinger systems, Phys. Lett. A, 382, 42-43, 3064-3070 (2018) · Zbl 1404.35414 · doi:10.1016/j.physleta.2018.08.014
[26] Sullivan, J., Kuznetsov-Ma breather-like solutions in the Salerno model, Eur. Phys. J. Plus, 135, 7, 1-12 (2020) · doi:10.1140/epjp/s13360-020-00596-1
[27] Strogatz, S.H.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC press (2018) · Zbl 1343.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.