×

Algebraic entropy of amenable group actions. (English) Zbl 1450.16019

Summary: Let \(R\) be a ring, let \(G\) be an amenable group and let \(R{*}G\) be a crossed product. The goal of this paper is to construct, starting with a suitable additive function \(L\) on the category of left modules over \(R\), an additive function on a subcategory of the category of left modules over \(R{*}G\), which coincides with the whole category if \(L(_RR) <\infty\). This construction can be performed using a dynamical invariant associated with the original function \(L\), called algebraic \(L\)-entropy. We apply our results to two classical problems on group rings: the stable finiteness and the zero-divisors conjectures.

MSC:

16S35 Twisted and skew group rings, crossed products
43A07 Means on groups, semigroups, etc.; amenable groups
16D10 General module theory in associative algebras
18E35 Localization of categories, calculus of fractions

References:

[1] Ara, P., O’Meara, K.C., Perera, F.: Stable finiteness of group rings in arbitrary characteristic. Adv. Math. 170(2), 224-238 (2002) · Zbl 1018.20006
[2] Cohn, P.M.: Free Ideal Rings and Localization in General Rings. New Mathematical Monographs, vol. 3. Cambridge University Press, Cambridge (2006) · Zbl 1114.16001
[3] Ceccherini-Silberstein, T., Coornaert, M.: The Garden of Eden theorem for linear cellular automata. Ergod. Theory Dyn. Syst. 26(1), 53-68 (2006) · Zbl 1085.37008 · doi:10.1017/S0143385705000520
[4] Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups, Springer Monographs in Mathematics. Springer, Berlin (2010) · Zbl 1218.37004 · doi:10.1007/978-3-642-14034-1
[5] Chung, N.-P., Thom, A.: Some remarks on the entropy for algebraic actions of amenable groups. arXiv:1302.5813 (2013)
[6] Dikranjan, D., Goldsmith, B., Salce, L., Zanardo, P.: Algebraic entropy of endomorphisms of abelian groups. Trans. AMS 361, 3401-3434 (2009) · Zbl 1176.20057 · doi:10.1090/S0002-9947-09-04843-0
[7] Elek, G.: The Euler characteristic of discrete groups and Yuzvinskii’s entropy addition formula. Bull. Lond. Math. Soc. 31(6), 661-664 (1999) · Zbl 1017.37007 · doi:10.1112/S0024609399006104
[8] Elek, G.: The rank of finitely generated modules over group algebras. Proc. Am. Math. Soc. 131(11), 3477-3485 (2003). (electronic) · Zbl 1037.43001 · doi:10.1090/S0002-9939-03-06908-9
[9] Elek, G., Szabó, E.: Sofic groups and direct finiteness. J. Algebra 280(2), 426-434 (2004) · Zbl 1078.16021 · doi:10.1016/j.jalgebra.2004.06.023
[10] Facchini, A.: Module Theory. Modern Birkhäuser Classics. Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules. Birkhäuser/Springer Basel AG, Basel (1998) (2012 reprint of the 1998 original) · Zbl 0930.16001
[11] Følner, E.: On groups with full Banach mean value. Math. Scand. 3, 243-254 (1955) · Zbl 0067.01203 · doi:10.7146/math.scand.a-10442
[12] Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323-448 (1962) · Zbl 0201.35602 · doi:10.24033/bsmf.1583
[13] Gordon, R., Chris Robson, J.: The Gabriel dimension of a module. J. Algebra 29, 459-473 (1974) · Zbl 0285.16018 · doi:10.1016/0021-8693(74)90081-7
[14] Huang, W., Ye, X., Zhang, G.: Local entropy theory for a countable discrete amenable group action. J. Funct. Anal. 261(4), 1028-1082 (2011) · Zbl 1235.37008 · doi:10.1016/j.jfa.2011.04.014
[15] Kaplansky, I.: Fields and Rings. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1995) (Reprint of the second (1972) edition) · Zbl 1001.16501
[16] Krieger, F.: Le lemme d’Ornstein-Weiss d’après Gromov. In: Dynamics, Ergodic Theory, and Geometry, vol. 54 of Math. Sci. Res. Inst. Publ., pp 99-111. Cambridge Univ. Press, Cambridge (2007) · Zbl 1144.43001
[17] Li, H., Liang, B.: Sofic mean length. arXiv:1510.07655 · Zbl 1455.16001
[18] Lück, \[W.: L^2\] L2-Invariants: Theory and Applications to Geometry and \[KK\]-Theory, vol. 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Berlin (2002) · Zbl 1009.55001
[19] McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings, vol. 30 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2001) (With the cooperation of L. W. Small (revised edition)) · Zbl 0980.16019
[20] Northcott, D.G., Reufel, M.: A generalization of the concept of length. Q. J. Math. Oxford Ser. 2(16), 297-321 (1965) · Zbl 0129.02203 · doi:10.1093/qmath/16.4.297
[21] Năstăsescu, C., van Oystaeyen, F.: Dimensions of ring theory. Mathematics and its Applications, vol. 36. Dordrecht etc. D. Reidel Publishing Company, a member of the KluwerAcademic Publishers Group. XI, p. 360 (1987) · Zbl 0626.16001
[22] Ornstein, D.S., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48, 1-141 (1987) · Zbl 0637.28015 · doi:10.1007/BF02790325
[23] Passman, D.S.: The Algebraic Structure of Group Rings. Robert E. Krieger Publishing Co. Inc., Melbourne (1985) (Reprint of the 1977 original) · Zbl 0654.16001
[24] Passman, D.S.: Infinite Crossed Products. Pure and Applied Mathematics, vol. 135. Academic Press Inc., Boston (1989) · Zbl 0662.16001
[25] Pete, G.: Probability and geometry on groups (2013). http://math.bme.hu/ gabor/PGG.pdf. Accessed 28 Nov 2018
[26] Ranicki, A. (ed.): Non-Commutative Localization in Algebra and Topology, vol. 330 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2006) · Zbl 1125.55004
[27] Salce, L., Zanardo, P.: A general notion of algebraic entropy and the rank entropy. Forum Math. 21(4), 579-599 (2009) · Zbl 1203.20048 · doi:10.1515/FORUM.2009.029
[28] Salce, L., Vámos, P., Virili, S.: Length functions, multiplicities and algebraic entropy. Forum Math. 25, 255-282 (2013) · Zbl 1286.16002 · doi:10.1515/form.2011.117
[29] Stenström, B.: Rings and Modules of Quotients. Lecture Notes in Mathematics, vol. 237. Springer, Berlin (1971) · Zbl 0229.16003
[30] Vámos, P.: Length Functions on Modules. PhD thesis, University of Sheffield (1968) · Zbl 0153.37101
[31] Ward, T., Zhang, Q.: The Abramov-Rokhlin entropy addition formula for amenable group actions. Monatsh. Math. 114(3-4), 317-329 (1992) · Zbl 0764.28014 · doi:10.1007/BF01299386
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.