×

Mortensen observer for a class of variational inequalities – lost equivalence with stochastic filtering approaches. (English. French summary) Zbl 1541.37105

Summary: We address the problem of deterministic sequential estimation for a nonsmooth dynamics governed by a variational inequality. An example of such dynamics is the Skorokhod problem with a reflective boundary condition. For smooth dynamics, R. E. Mortensen [J. Optim. Theory Appl. 2, 386–394 (1968; Zbl 0177.36004)] introduced in 1968 a nonlinear estimator based on likelihood maximisation. Then, starting with O. Hijab [in: Advances in filtering and optimal stochastic control, Proc. IFIP-WG 7/1 Work. Conf., Cocoyoc/Mex.Lect. Notes Contr. Inf. Sci. 42, 170–176 (1982; Zbl 0503.93057)] in 1980, several authors established a connection between Mortensen’s approach and the vanishing noise limit of the robust form of the so-called Zakai equation. In this paper, we investigate to what extent these methods can be developed for dynamics governed by a variational inequality. On the one hand, we address this problem by relaxing the inequality constraint by penalization: this yields an approximate Mortensen estimator relying on an approximating smooth dynamics. We verify that the equivalence between the deterministic and stochastic approaches holds through a vanishing noise limit. On the other hand, inspired by the smooth dynamics approach, we study the vanishing viscosity limit of the Hamilton-Jacobi equation satisfied by the Hopf-Cole transform of the solution of the robust Zakai equation. In contrast to the case of smooth dynamics, the zero-noise limit of the robust form of the Zakai equation cannot be understood in our case from the Bellman equation on the value function arising in Mortensen’s procedure. This unveils a violation of equivalence for dynamics governed by a variational inequality between the Mortensen approach and the low noise stochastic approach for nonsmooth dynamics.

MSC:

37N40 Dynamical systems in optimization and economics
37N35 Dynamical systems in control
49J40 Variational inequalities
49J52 Nonsmooth analysis
93E10 Estimation and detection in stochastic control theory
93E03 Stochastic systems in control theory (general)

References:

[1] A. Bain and D. Crisan. Fundamentals of stochastic filtering, volume 60. Springer Science & Business Media, 2008.
[2] T. Banek. Filtering of absorbing and reflecting brownian motions. Systems & control letters, 8(2):153-159, 1986. · Zbl 0615.93067
[3] G. Barles. Fully non-linear neumann type boundary conditions for second-order elliptic and parabolic equations. Journal of Differential Equations, 106(1):90-106, 1993. · Zbl 0786.35051
[4] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi, volume 17 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. · Zbl 0819.35002
[5] J. B., F. Bernardin, and C.-H. Lamarque. Non-smooth deterministic or stochastic discrete dynamical systems. Mechanical Engineering and Solid Mechanics Series. ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2013. Applications to models with friction or impact. · Zbl 1280.70001
[6] J. Bastien, M. Schatzman, and C.-H. Lamarque. Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A Solids, 19(2):277-307, 2000. · Zbl 0954.74011
[7] H. Brezis. Ope¦rateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. ISSN. Elsevier Science, 1973. · Zbl 0252.47055
[8] Z. Chen. Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics, 182(1):1 -69, 2003.
[9] J. M. C. Clark and D Crisan. On a robust version of the integral representation formula of nonlinear filtering. Probability theory and related fields, 133(1):43-56, 2005. · Zbl 1079.60041
[10] M. G. Crandall and P. L. Lions. Two approximations of solutions of hamilton-jacobi equations. Mathematics of Computation, 43(167):1-19, 1984. · Zbl 0556.65076
[11] M. H. A. Davis. On a multiplicative functional transformation arising in nonlinear filtering theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 54(2):125-139, 1980. · Zbl 0431.60043
[12] J.-P. Demailly. Analyse numérique et équations différentielles. Grenoble Sciences. EDP Sciences, Les Ulis, fourth edition, 2016. · Zbl 1362.65001
[13] H. Doss. Liens entre équations différentielles stochastiques et ordinaires. In Annales de l’IHP Probabilités et statistiques, volume 13, pages 99-125, 1977. · Zbl 0359.60087
[14] G. Duvaut and J.-L. Lions. Inequalities in mechanics and physics, volume 219 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John. · Zbl 0331.35002
[15] L. C. Evans and H. Ishii. A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2(1):1-20, 1985. · Zbl 0601.60076
[16] W. H Fleming. Deterministic nonlinear filtering. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV, 25(3-4):435 -454 (1998), 1997. · Zbl 1002.93061
[17] A. Friedman. Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. · Zbl 0144.34903
[18] O. Hijab. Minimum Energy Estimation. PhD thesis, University of California, Berkeley, 1980.
[19] O. Hijab. Asymptotic nonlinear filtering and large deviations. Advances in Filtering and Optimal Stochastic Control, pages 170-176, 1982. · Zbl 0503.93057
[20] M. R. James and J. S. Baras. Nonlinear filtering and large deviations: A PDE-control theoretic approach. Stochastics: An International Journal of Probability and Stochastic Processes, 23(3):391-412, 1988. · Zbl 0642.93059
[21] A. H. Jazwinsky. Stochastic processes and filtering theory. Academic Press, 1970. · Zbl 0203.50101
[22] G Kallianpur and C. Striebel. Estimation of stochastic systems: Arbitrary system process with additive white noise observation errors. The Annals of Mathematical Statistics, 39(3):785-801, 1968. · Zbl 0174.22102
[23] I. Karatzas, I. K. S. Shreve, S. Shreve, and S. E. Shreve. Brownian Motion and Stochastic Calculus, volume 113 of Graduate Texts in Mathematics. Springer New York, 1991. · Zbl 0734.60060
[24] A. J. Krener. Minimum energy estimation and moving horizon estimation. In 54th IEEE Conference on Decision and 2015, 2015.
[25] A. J. Krener. A Lyapunov theory of nonlinear observers. In G G Yin and Qing Zhang, editors, Stochastic analysis, control, optimization and applications, pages 409-420. Springer, 1998. · Zbl 0916.93019
[26] P.-L. Lions. Neumann type boundary conditions for Hamilton-Jacobi equations. Duke Mathematical Journal, 52(3), 1985. · Zbl 0599.35025
[27] P.-L. Lions. Optimal stochastic control with state constraints. In Stochastic Differential Systems Filtering and Control, pages 286-295. Springer, 1985. · Zbl 0574.93071
[28] J. L. Menaldi. Stochastic control problem for reflected diffusions in a convex bounded domain. In Advances in Filtering and Optimal Stochastic Control, pages 246-255. Springer, 1982. · Zbl 0499.93071
[29] R. E. Mortensen. Maximum-likelihood recursive nonlinear filtering. J. Optim. Theory Appl., 2(6):386 -394, 1968. · Zbl 0177.36004
[30] E. Pardoux. Stochastic partial differential equation for the density of the conditional law of a diffusion process with boundary. In Stochastic analysis (Proceeings of International Conference, Northwestern University, Evanston, Ill., 1978), pages 239-269, 1978. · Zbl 0439.60035
[31] E. Pardoux. Stochastic partial differential equations and filtering of diffusion processes. 1980.
[32] E. Pardoux. Équations du filtrage non linéaire de la prédiction et du lissage. Stochastics, 6(3-4):193-231, 1982. · Zbl 0491.93062
[33] E. Pardoux. Filtrage de diffusions avec conditions frontieres: caracterisation de la densite conditionnelle. In Journées de Statistique des Processus Stochastiques, pages 163-188. Springer, 1978. · Zbl 0372.60057
[34] E. Pardoux. Filtrage non lineaire et equations aux derivees partielles stochastiques associees. In Paul-Louis Hennequin, editor, Ecole d’Eté de Probabilités de Saint-Flour XIX -1989, pages 68-163, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.
[35] E. Pardoux and A. Răşcanu. Sdes with multivalued drift. In Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, pages 229-351. Springer, 2014. · Zbl 1321.60005
[36] W. A. Strauss. Partial differential equations. John Wiley & Sons, Ltd., Chichester, second edition, 2008. An introduction. · Zbl 1160.35002
[37] H. J. Sussmann. On the gap between deterministic and stochastic ordinary differential equations. The Annals of Probability, pages 19-41, 1978. · Zbl 0391.60056
[38] J. Xiong. An introduction to stochastic filtering theory, volume 18. OUP Oxford, 2008. · Zbl 1144.93003
[39] M. Zakai. On the optimal filtering of diffusion processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 11(3):230-243, 1969. · Zbl 0164.19201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.