×

Combining vibrational linear-by-part dynamics and kinetic-based decoupling of the dynamics for multiple elastoplastic smooth impacts. (English) Zbl 1343.70008

Summary: This article proposes a linear-by-part approach for elastoplastic 3D multiple-point smooth impacts in multibody systems with perfect constraints. The model is an extension of a previous version, restricted to the perfectly elastic case, able to account for the high sensitivity to initial conditions and for redundancy without assuming any particular collision sequence [the authors, Multibody Syst. Dyn. 31, No. 4, 497–517 (2014; Zbl 1303.70010)]. Energy losses associated with compression and expansion in percussive analysis is a matter as complex as the physical phenomena involved, at the nanoscale level, for different materials. Simplified models can be developed for specific purposes, which can retain the most relevant trends of internal damping and at the same time be suitable for a particular analytical approach of impact mechanics. In the context of this article, energy dissipation due to material deformation is introduced through a linear-by-part elastoplastic model consisting on two elementary sets of springs and dry-friction dampers. The first set accounts for inelastic behavior (energy loss without permanent indentation), whereas the second one introduces plasticity (that is, permanent indentation). In inelastic and plastic collisions, instantaneous unilateral constraints may appear, thus reducing the number of degrees of freedom (DOF) of the system. The calculation of the corresponding normal contact force at the constrained points is then necessary in order to detect whether the constraint holds or disappears (either because a new compression or an expansion phase starts, or because contact is lost). Different simulated application examples are presented and thoroughly discussed.

MSC:

70E55 Dynamics of multibody systems
70J10 Modal analysis in linear vibration theory
74M15 Contact in solid mechanics
74M20 Impact in solid mechanics

Citations:

Zbl 1303.70010

References:

[1] Barjau, A., Batlle, J.A., Font-Llagunes, J.M.: Combining vibrational linear-by-part dynamics and kinetic-based decoupling of the dynamics for multiple smoothimpacts with redundancy. Multibody Syst. Dyn. 31, 497-517 (2014). doi:10.1007/s11044-013-9398-z · Zbl 1303.70010 · doi:10.1007/s11044-013-9398-z
[2] Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000). doi:10.1017/CBO9780511626432 · Zbl 0961.74002 · doi:10.1017/CBO9780511626432
[3] Brogliato, B.: Nonsmooth Mechanics. Models, Dynamics and Control, 2nd edn. Springer, Berlin (1999) · Zbl 0917.73002
[4] Schiehlen, W., Seifried, R., Eberhard, P.: Elastoplastic phenomena in multibody impact dynamics. Comput. Methods Appl. Mech. Eng. 195, 6874-6890 (2006). doi:10.1016/j.cma.2005.08 · Zbl 1120.74679 · doi:10.1016/j.cma.2005.08
[5] Glocker, C.: Energetic consistency conditions for standard impacts. Part I: Newton-type inequality laws and Kane’s example. Multibody Syst. Dyn. 29, 77-117 (2013) · Zbl 1271.74365 · doi:10.1007/s11044-012-9316-9
[6] Batlle, J.A.: Termination conditions for three-dimensional inelastic collisions in multibody systems. Int. J. Impact Eng. 25(7), 615-629 (2001). doi:10.1016/S0734-743X(01)00007-0 · doi:10.1016/S0734-743X(01)00007-0
[7] AgullóBatlle, J., Barjau, A.: Rough collisions in multibody systems. Mech. Mach. Theory 26(6), 565-577 (1991). doi:10.1016/0094-114X(91)90039-7 · doi:10.1016/0094-114X(91)90039-7
[8] Ivanov, A.P.: On multiple impact. J. Appl. Math. Mech. 59(6), 887-902 (1995) · Zbl 0902.70009 · doi:10.1016/0021-8928(95)00122-0
[9] Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. Part I: Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2101), 3193-3211 (2008) · Zbl 1186.70012 · doi:10.1098/rspa.2008.0078
[10] Nguyen, N.S., Brogliato, B.: Multiple Impacts in Dissipative Granular Chains. Springer, Berlin (2014) · doi:10.1007/978-3-642-39298-6
[11] Wang, J., Liu, C., Zhao, Z.: Nonsmooth dynamics of a 3D rigid body on a vibrating plate. Multibody Syst. Dyn. 32, 217-239 (2014) · Zbl 1351.70003 · doi:10.1007/s11044-013-9385-4
[12] Ruspini, D. C.; Khatib, O., Impact/Contact models for the dynamic simulation of complex environments, 185-195 (1999)
[13] Johansson, L.: A Newton method for rigid body frictional impact with multiple simultaneous impact points. Comput. Methods Appl. Mech. Eng. 191, 239-254 (2001). doi:10.1016/S0045-7825(01)00272-9 · Zbl 1011.70003 · doi:10.1016/S0045-7825(01)00272-9
[14] Seifried, R., Schiehlen, W., Eberhard, P.: Numerical and experimental evaluation of the coefficient of restitution for repeated impacts. Int. J. Impact Eng. 32, 508-524 (2005). doi:10.1016/j.ijimpeng.2005.01.001 · doi:10.1016/j.ijimpeng.2005.01.001
[15] Wu, C., Li, L., Thornton, C.: Rebound behavior of spheres for plastic impacts. Int. J. Impact Eng. 28, 929-946 (2003). doi:10.1016/S0734-743X(03)00014-9 · doi:10.1016/S0734-743X(03)00014-9
[16] Biot, M.A.: Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J. Appl. Phys. 25(2), 1385-1391 (1954) · Zbl 0057.19103 · doi:10.1063/1.1721573
[17] Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) · Zbl 0599.73108 · doi:10.1017/CBO9781139171731
[18] Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42, 440-445 (1975) · doi:10.1115/1.3423596
[19] Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multi-body systems. Nonlinear Dyn. 5, 193-207 (1994)
[20] Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357-375 (2011) · Zbl 1263.70007 · doi:10.1007/s11044-010-9237-4
[21] Walton, O.R., Braun, R.L.: Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mech. 63, 73-86 (1986) · doi:10.1007/BF01182541
[22] Walton, O.R., Braun, R.L.: Viscosity, granular temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949-980 (1986). doi:10.1122/1.549893 · doi:10.1122/1.549893
[23] Stronge, W.J.: Chain reaction from impact on aggregate of elasto-plastic ‘rigid’ bodies. Int. J. Impact Eng. 28, 291-302 (2003) · doi:10.1016/S0734-743X(02)00033-7
[24] Kruggel-Emden, H., Simsek, E., Rickelt, S., Wirtz, S., Scherer, V.: Review and extension of normal force models for the Discrete Element Method. Powder Technol. 171, 157-173 (2007) · doi:10.1016/j.powtec.2006.10.004
[25] Yigit, A.S., Christoforou, A.P.: On the impact of a spherical indenter and an elastic-plastic transversely isotropic half-space. Compos. Eng. 4(11), 1143-1152 (1994) · doi:10.1016/0961-9526(95)91288-R
[26] Vu-Quoc, L.O., Zhang, X.: An elastoplastic contact force-displacement model in the normal direction: displacement-driven version. Proc. R. Soc. Lond. A 455, 4013-4044 (1999) · Zbl 0984.74057 · doi:10.1098/rspa.1999.0488
[27] Sivaselvan, M.V., Reinhorn, A.M.: Hysteretic models for deteriorating inelastic structures. J. Eng. Mech. 126(6), 633-640 (2000) · doi:10.1061/(ASCE)0733-9399(2000)126:6(633)
[28] Bastien, J., Lamarque, C.-H.: Persoz’s gephyroidal model described by a maximal monotone differential inclusion. Arch. Appl. Mech. 78, 393-407 (2008) · Zbl 1161.74303 · doi:10.1007/s00419-007-0171-8
[29] Bastien, J., Schatzman, M., Lamarque, C.-H.: Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A, Solids 19, 277-307 (2008) · Zbl 0954.74011 · doi:10.1016/S0997-7538(00)00163-7
[30] Ismail, M., Okhouane, F., Rodellar, J.: The hysteresis Bouc-Wen model, a survey. Arch. Comput. Methods Eng. 16, 161-188 (2009) · Zbl 1170.74300 · doi:10.1007/s11831-009-9031-8
[31] Yigit, A.S., Christoforou, A.P., Majeed, M.A.: A nonlinear visco-elastoplastic impact model and the coefficient of restitution. Nonlinear Dyn. 66, 509-521 (2011) · doi:10.1007/s11071-010-9929-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.